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ABSTRACT

Various concepts of ellipticity of finite-difference
approximations to general elliptic partial differential sys-
tems are reviewed and introduced, and rules are given for the
construction of stable schemes with high approximation orders,
even for singular perturbation problems. Fast multi-grid
solvers for these discrete schemes are described. These sol-
vers also provide a convenient way of separating the questions
of accuracy and stability (using, for example, both central
and upstream differencing). The local mode analysis, which
accurately predicts the efficiency of multi-grid solvers, 1is
presented. Concrete examples are given in terms of Cauchy-
Riemann eguations and the steady-state incompressible Navier-
Stokes equations. Their multi-grid solution, based on new
‘"distributive” relaxation schemes, costs about seven work-

units.
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1. INTRODUCTION
The Multi-Level Adaptive Technique (MLAT) is a numerical

strategy of solving continuous problems by cycling between
coarser and finer levels of discretization. For general par-
tial differential-boundary~value problems this technique pro-
vides a method for flexible, nearly optimal discretization,
together with a very fast solver of the discrete equations. A
sequence of uniform grids (or "levels"), with geometrically
decreasing mesh-sizes, is employed. The cooperative solution
process on these grids involves relaxation sweeps over each
of them, coarse-grid-to-fine-grid interpolations of correc-
tions and fine-to-coarse transfers of residuals. MLAT is des~
cribed in ([B3), where historical notes are provided. A more
recent brief survey is [B7}. In this article we discuss the
construction of discrete approximations to general elliptic
boundary-value problems, and their fast multi-grid solutions.

The various multi-grid (multi-level) algorithms used as
fast solvers of discrete equations are briéfly presented in
Section 2,

In Section 3, concepts of ellipticity for discrete sys-
tems are extensively discussed. The motivation is the need
for general and convenient rules of constructing finite-
difference approximations to elliptic systems, with any pres-
cribed order of accuracy, and with sufficient stability. This
need is not restricted to multi-grid methods, of course, but
the multi-grid algorithm offers new possibilities.

First, in multi-level structures we need to construct
difference approximations on uniform grids only, since non-
uniformity is obtained simply by using non-coextensive levels
'(see {B5]). We can also assume the boundary to coincide with
grid lines (see Sec. 3.5 in [B5]). Furthermore, the gquestions
of accuracy and stability are effectively separated in multi-
grid algorithms. Stable approximations are needed in the
relaxation phase, while the accuracy is determined by the
approximaﬁion used in the residual transfers, which itself
need not be stable (see Sec. 3.11).



The ellipticity concept for finite-difference equations
is more involved than in the differential case, because of its
dependence on the mesh-size h: 1In the Fourier analysis, com-
ponents with wavelengths smaller than 2h are absent, which
may exactly‘be the components that determine the local proper-
ties (such as ellipticity) of the differential operator. The
common practice of attempting at "positive type" difference
approximations is sometimes successful, but lacks generality.
Positive type approximations are not available for high-order
equations, or for high-order approximations to low-order egua-
tions. Furthermore, positive type is neither necessary nor
sufficient for stability. The definitions of discrete ellip-
ticity introduced by Thomée (T2], (T3}, and Thomée and
Westergren [TW]) are in a sense too close to the differential
definition. They are generally useful only for "sufficiently
small" h. For the reai mesh-sizes used in many practical
problems these definitions do not yield the desired stability
properties. We therefore discuss various corrections to these

definitions, includinc the scaled ellipticity concepts

mentioned in [B2] and extensively developed by Frank ([Fl}-
[F6]. We then point out that the crucial stability properties
depend quantitatively on a certain "measure of ellipticity",
which; unlike scaled ellipticity, is useful for singular per-:
turbation problems even when the reduced problem is not eilip-
tic. The study here is made in terms of elliptic systems of
equations, whereas previcus studies of discrete ellipticity
treated approximations to just one elliptic differential
equation.

' Readers interested cnly in the practical aspects of ccn-
structing finite-difference systems can skip the first parts
of Sec. 3 and go directly to Sec. 3.10, where stable schemes
of arbitrary orders are described. In this context high-order
"upstream" differencing to singular-perturbation problems is
discussed, together with its relation to artificial viscosity.
Adding explicit terms of artificial viscosity is another,
perhaps preferable, alternative. High-order approximatjions

to equations in divergence form, such as V-(a(x)Vu) are also
presented. Then, in Sec. 3.11, the multi-grid technique of

combining upstream and central differencing is introduced.



The stability of difference operators is intimately
connected to their fast multi-grid solution. Specifically,
the error can be efficiently smoothed by relaxation only if
the difference operator has good "measure of ellipticity". In
Sec. 4 we present the theoretical aspects of the multi-grid
procésses, bringing out that relation between stability and
fast multi-grid solutions. The tool being used is the local
mode analysis ([B2], [B3]) which predicts the multi-grid per-
formance very precisely, so much so that it is routineiy used
in optimizing the algorithms and in debugging the programs.

_ The fine-to-coarse and coarse-to-fine optimal inter-
polation orders are determined by general simple rules
derivable from order-of-magnitude mode analysis, so that in
each particular problem all we have to decide is the relaxa-
tion scheme. The construction of good relaxation schemes,
like the construction of good difference equations, requires
expertise and physical insight. But a general computer
routine exists thch can evaluate the efficiency (i.e., the

smoothing rate) of any proposed scheme. The routine,

developed in collaboration with Nathan Dinar, is called
SMORATE, and is available on [MT].

In the last three sections we describe in detail the
discretization and multi-grid solution of three concrete
elliptic systems: Cauchy-Riemann eguations, steady-state
Stokes equations and steady-state incompressible Navier-Stokes
equations. This work was also done in collaboration with
Nathan Dinar. The description proceeds (as indeed did the
research itself) from the-simplest system (Cauchy~Riemann) to
the more complicated ones. A new type of relaxation, called

Distributive Gauss Seidel (DGCS), has been developed, which
yields a smoothing factor u = .5 for each of these systems.
As a result, the multi-grid solution of each system requires
about seven work units (i.e., a computational work equivalent
to about seven relaxation sweeps over the finest grid). This
is true in particular for the incompressible Navier Stokes
equations in an arbitrary domain with large Reynolds numbers.
The procedure may work even when the steady-state solution is
unstable, provided the coarsest grid is fine enough to
resolve the unstable modes and the coarsest-grid equations
are solved directly.
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For the (inhomogeneous) Cauchy-Riemann system there
exists an even faster multi-grid solution, which solves the
second-order discrete equations to the level of truncation
errors in less than 24n additions, where n is the number of
discrete unknowns, without using any multiplications or divi-
sions, and without taking advantage of the smoothness of the

solution (Sec. 5.5).

~ Readers familiar with multi-grid procedures can start
their reading at Sec. 5, and learn about ellipticity of dis-
crete systems first in terms of the concrete examples.

Multi-grid procedures have been developed for non-
elliptic flow problems, such as transonic flows (see (B3],
{sB]), and (in a preliminary way only) compressible Navier-
Stokes and initial-value problems {(see [B7]). For the multi-
level adaptive techniques of treating boundary layers and
other singularities — see [BS5].



2, MULTI-GRID ALGORITHMS -
In this chapter we summarize the types of multi-grid

algorithms that are currently used as fast solvers for various
flow problems. For more explanations the reader is referred
to [B3], [(B4] and [B5]). We start with the more universally
applicable type, the accommodative Full Multi-Grid (FMG) Full
Approximation Scheme (FAS) algorithh. The denomination
becomes clear later, when we describe algorithms which are
not accommodative (fixed algorithms), or not FMG (cycling
algorithms), or not FAS (the correction scheme). All the
algorithms are based on Cycle C (see [B3], where a sample
program is given and explained). Similar algorithms could be
based on Cycle A or Cycle B (see Fig. 2 in [B3], and more
details in [B2]), but they are not often used.

2.1 Difference eguations notation

The differential problem considered is a system of g
differential equations

LU = Fy(x , (x€8 ¢ e, j=1,...,9) , (2.1a)
and m boundary conditions

BiU(X) = Gylx) , (x €30, 3 = 1,ec.,m) . (2.1b)
where x = (xl,...,xd) are the independent variables,
U= (Uy,...,0 )T are the real unknown functions

a7

F = (Fl,...,Fq) and G = (Gl,...,Gm) are real known func-

tions (the given data), and Lj and Bj are differential

operators, not necessarily linear.

The problem is discretized on a sequence of M levels
{(grids), with mesh-~-sizes hl'hZ""'hM , where hk+1 = hk/2 .
The discrete approximation to U on the k-th level is
denoted gk = (U?,.

problems, the grids may be "staggered". That is, on the same

..,U];)T . In non-scalar (i.e., g > 1)

level k , different functions U? may be defined at
different points in each grid cell. (See for example;
Figs. 5.1 and 6.1 below.)

The discrete approximation to (2.1) on the k-th level is
written in the form '



L§ u¥(x) = F?(g) , (x € a? V3= Ly.e.,qtm) (2.2)

where the first g equations (1 ¢ j ¢ q) approximate the

interior eguations (2.la) and the other m equations

approximate the boundary conditions (2.1b). Thus, Q? is
the intersection of the lattice
d,k _ .. ,
Rj {(ajl,...,ajd)-fhk(vl,...,vd). vy ar? integers}

with @ (for 1 € j € q) , or with some extension of 3Q
(for g < j € m) . Note that different interior equations
may be centered at different grid positions (the lattice
shifts éj may be different for different equations j). For
purposes of multi-grid processing it is important to keep the
discrete equations in a form analogous to the differential
eguations. This means first that equations (2.2) are written
in the difference-quotients form, without, for example, multi-
plying through by some power of h, . Such a multiplication
can be used in the actual program, but for a correct for-
mulation of the transfer between levels we need the equations
in their differential-analog form. Also, we should avoid

mixing the boundary conditions and the interior eguations.

We will use the vector notation gk = (L?,...,L:+m)T .
k _ ,.k k T L .
F = (Fl""'Fq+m) » Writing (2.2) in the compact form

L* g* = gk | (2.3)

In the linear case gk can be viewed as a g %X (g+m) matrix

of difference-quotient operators independent of gk

Interpolations. The operation of transfer, or interpolation,

from level k to level k' will generally be denoted by

Ii' . That is, if gk is a function defined on the grid with
mesh size h, , then Ii' gk is an approximation to gk
defined on the grid with mesh size hk' . In perticular,
I§+l will denote an interpolation, usually a polynomial
(Lagrange) interpolation of some specific order. The order
need not be the same for all component functions u? . The

order of interpolating u? should not be smaller than the

highest order of derivatives of u? in (2.1). When higher-

order interpolation is needed (Step B below), we will denote



it by I . The order of JI);;+l u? should not be less than the

largest sum m;+Py . where m; is the order of a derivative
of u? and Py is the approximation order of that derivative.
In other words, the II interpolation should be exact for all
polynomials for which the finite-difference approximation is
k-1
Ty

exact. The fine-to-coarse transfers is made by some

- local averaging; i.e., It_l u?(g) is some weighted average.
of values u?(z) at several points y close to x . These
transfers and interpolations are specified in more detail in
later chapters, where specific problems are discussed.

The purpose of the multi-grid algorithms described below
is to compute a fast approximation to gM , the solution to
the finest-grid equations. The evolving approximation is
denoted EM. In the process, equations (2.2) on coarser
grids: (k <M) will be modified by changing their right-hard
side. The modified right-hand sides of the k-th level
equations will generally be denoted by fk = (ft,...,fk+m)
and will depend on gk+l , the current approximation og the
next finer level. The solution to that modified equation
will still be denoted by Uk , and its computed approximation

will still be denoted by u* .

The meaning of the modified equation and the modified

gk depends on the scheme. 1In the Correction Scheme (CS) gk
is designed to be an approximate correction to gk+l , hence
the modified right-hand side will be
gk - I§+1 £k+1 (2.4)
where
1:k+l - gk+l__£k+1 9k+1 (2.5)
k+l

is the residual function of the current approximation u
at the finer level. 1In the Full-Approximation Scheme (FAS)

the designed approximate correction to gk+l is
gk-It+l gk+l p hence the modified right-hand side will be
k _ k. k k+1 k k+1
The difference
1k = Ek Ek (2.7)

gives, in this case, an estimate for the local truncation



error on level k ; i.e., an approximation to .

1}3=§k9'§k . (2.8)

Since - Ig is the residual of the true differential solution
U on the finest grid, any computed approximation gM is a
satisfactory approximation to gM as soon as the ncrm of its
residuals llrMH is smaller than Illgﬂ . Note, however,
that IM is not computed, since (2.6) and (2.7) hold only
when k is not the finest level. But, by Taylor expansions

one can get

k _ p P

5 = Q(x)hk + o(hk ) (2.9)
where p is the approximation order and a(x) is independent
of h . Hence

K+ -

b = 2P gk, (2.10)
which can be used to estimate |llgll in our stopping
criteria.

2.2 Accommodative FAS Full Multi-Grid (FAS FMG) Algorithm
The Full Multi-Grid (FMG) algorithms, unlike cycling
algorithms (see Section 2.6), work themselves up from the

coarsest level 1 to the finest M. At each stage we will
denote by £ the "currently finest" level, that is, the
largest k for which an_approximate solution uk has
already been computed. By k we will generally denote the
current operation level. Hence kg% . In "accomodative"
algorithms the decision to switch to finer levels or back to
coarser ones depends on internal checks, usually based on
relative magnitudes of residuals (see Steps E and G below).
The steps of the accomodative FAS FMG algorithm, also

flowcharted in Fig. 2.1, are as follows.
A, Solving coarsest-grid equations. Set =1 . Compute an

approximate solution ul to the coarse grid eguations (2.2,
k=1), either by relaxation or by some direct method. (The
term direct method here means a non-iterative solution of
linear systems. If the system in nonlinear, the "direct"
method will include a few Newton iterations, where the linear

system at each iteration is solved directly.)

-10-



ut~—I[f_,uH
fleFt Solve:L'u' = F!
- 0
k — 1
v Relax L*y*=¢*
- éko— co - ey dynOFnlc e~ e,
residuals

Keo=K +{

/ 4

k-1 Ktk kel
I ) u =1, u

K k=1_
U -y +Ik 1(u

k<l-1{ fk""l_k uk +1:+‘ (fk+|_Lk+| uk-bi)

d .
. 6"_2_9"5,( -1,‘”‘32‘ € = ey,

FIGURE 2.1. Accommodative FAS Full Multi-Grid (FAS FMG)
Algorithm.

In this version the coarZest-grid (k=1) correction equations
are solved by relaxation. The notation is explained in the
text. The operation in the detached-line box
(t-extrapolation) is optional.
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B. Setting a new finest level. If ¢=M , the algorithm is

terminated. If not, increase £ by 1 . Introduce, as the
first approximation for the new finest level, the interpolated

©

function

L _ 2 -1

u "32—15 . (2.11)
(The higher-order interpolation used here is such that
interpolation errors, in any norm, are at most comparable to
0

truncation errors on level £&~1 ,) Set €g =€y 4 2
sufficiently small tolerance. ( €y serves as the tolerance
for solving the k-level equations; see Step E. For €y » @
realistic value is introduced in Step G below, so the value
sg is only temporary. eg = 0 may be used.) Also set

k=2 .

c. Starting a new operation level k . Put Ek = +» (or a
very large number), for reasons to become clear in Step E
below. ) .

D. Relaxation sweep. Improve gk by one relaxation sweep.

(The role of relaxation is to smooth the error Qk - Ek s SO

that it can later inexpensively be approximated on a coarser
grid. Details of the relaxation sweep and its smoothing power
are discussed in later chapters dealing with specific
equations. Generally, the sweep may consist of several passes,
e.g., one pass for each.of the g+m equations (2.2) --
except for those equations which are automatically satisfied,
such as Dirichlet boundary conditions.) Concurrently with
the sweep, compute some norm e, of the residuals. (Usually
"dynamic" residuals are computed, since they are least
expensive: they are almost calculated anyway as part of the
relaxation steps.)

E. Testing convergence and its rate. If convergence at the

current operation level has been obtained (ekgek) , go to
Step I. If not, and if the relaxation convergence rate is
still satisfactory (i.e., 1if ek<n€k , where n 1s a pres-
cribed factor to pe discussed in Sec. 2.3) set ep=e, and

go back to Step D (i.e., continue relaxation. On returning
later back to the present Step, ék will contain the previous
value of ey }. If however the convergence rate is slow

(ey >n5k) , and the level is not the coarsest (k>1), go to
-tep F. (The slow convergence implies that the error

~-12-



gk-gk is smooth, and should therefore be approximated on

a coarser level.)

F. Transfer to coarser level. Decrease k by 1

Introduce, as the first approximation for the new (the coarser)
level k , the function

k _ .k k+1
u o= I, v . (2.12)

Define the right-hand side for the new level by

k _ .k k k k+1 k+l  k+l
£7 = L7 u o+ I (f ~ L u

Y (2.13)

which, by (2.12), is the same as (2.6). As the tolerance for
this new problem, set € = Gek+l . (Since the coarse-grid
solution is designed to correct the fine grid solution, its
residuals should be smaller than those at the fine grid, but
there is no point in having them much smaller. 6=0.2 1is
usually small enough. See also Sec. 4.7.2.)

AG. Finest level stopping parameters. 'Concurrently with the
computation of gk , calculate also the norm of || £k - Ek I

using the same norm as used for the dynamic residuals (see
Step D). If k=i-1 , set

€, = 2°F e -, ' (2.14)
where p 1s the order of approximation (cf. (2.10). We will
thus stop on level 3§ when its residuals become comparable to
the truncation errors).

H. Coarse-level solution. If k=1 (the coarsest level},

‘one may like to solve the problem directly (see Step A above)
and go to Step I. Otherwise, go to Step C.

I. Employing a converged solution to correct a finer level.
If k=4 , go to Step B. If k<& , make the correction

where I§+1 must be identically the same operator as in
(2.12). Then increase k by 1 and go to Step C.

2.3 Switching anad Stooping Triteria.

A gooa general value for the fine-to-coarse switching
parameter n (see Step E) is

n = max u(x) ' (2.16)
X

- where 1. is the smoothing factor per sweep (see Sec. 4.1

-13-



below), which may vary over the domain if the problem is
nonlinear or if its coefficients are not constant. Actually,
the precise value of n (as well as that of 6 , in Step F)
is not critical. If coarse-grid corrections are not efficient
enough, n may always be increased a little, a safe value
being for example n = 7t/2 . 1f § has large variations
over the domain, the switching test (eksnék) can be made
separately in subdomains, possibly resulting in partial
relazation sweeps, i.e., sweeps which are confined to some
subdomains. (Partial sweeps may be important only in multi-
grid processes, and not in pure relaxation processes, because
it is only with respéct to smoothing, and not with respect

to convergence, that errors at separate subdomains are
practically decoupled from each other.)

In non-scalar (g>l) problems, the different relaxation
passes for different interior equations j (lg¢jgg in (2.2))
may have different smoothing factors, in which case one can
make more passes on some of them, provided there is no
serious feedback of errors from those equations to others.
(See an example in Sec. 7.3.) Similarly, even in scalar
(g=1) problems, relaxation passes over boundary equations
(g<jgg+m in (2.2)) may have slower smoothing than the
interior passes. In such a case one can make several

(usually two) boundary passes for each interior pass.

Generally when we can ignore coupling (or feedback)
between the smoothing processes of the different equations,
then for every Na passes on eguation & there should be
made NB passes on Equation B , where Nulogua roughly
eqguals Nslogps ;) U

J
j . Where the relaxation passes are coupled, however, the

being the smoothing factor of equation

optimal strategy should in principle be based on minimizing

the overall smoothing factor per work unit; i.e., minimizing

I = max max [u(§,§)|l/N v ' (2.16a)

X n
= g<fgfem

14~



where u(8,x) is the largest eigenvalue of the amplification
matrix (see Sec. 4.1) of the compound sweep (including
possibly several passes on some equations), and N is the
number of work-units in that ;weep. In practice, however,
only small values of Nu ' NB and N should be used so as
not to approach the limits of the smoothing process (see

Sec. 4.3).

2.4 Truncation Extrapolation.

At convergence, it is easy to see that the approximate

local truncation error (see (2.7)) is
LA A SRR (2.17)
Thus, -1k is the residual of the "currently finest" solution
gl in the level-k equations. It follows from (2.9) that
* ok
~a(mP - nP
~ (1-(hy/h) Py gk, | | (2.18)

where =~ indicates equality up to higher-order terms in hk
and hl . Up to such higher order terms, we can therefore
replace Ik by the more accurate zg . The place to do it
is with Step G: If k=%-1 we replace the right-hand side
of the new level by
E§'1 = -2t ] 5 j” v (1£35g+m)
(2.19)
where P is the approximation order of the j-th equation.
For k<&-1 , (2.19) should not be used again, i.e., using

(2.13) in the usual way would now give

o= f ok ol - O MY ke, 220
so that the correction in §k+l (approximately equal to Ié)

is automatically transferred to the coarser levels.

Replacing £ by £ 1is called "local truncation
extrapolation", or briefly 1-extrapolation. It is a trivial
addition to the algorithm, and can improve the sclution very
much, even in cases where global-truncation (Richardson)
extrapolation cannot, since globagl error expansions in terms
of h do not always exist.

Note that for staggered grids the interpolation I§+l in

~-15~



(2.12) is not trivial. For T-extrapolation it should be of
the suitable hicher~order. For further discussion and

results of T-extrapolations, see [B5] and [D2].

2.5 Fixed Algorithms

A "fixed", in contrast to "accomodative", algorithm is
one in which the internal checks (in Step E above) are
replaced by pre-assigned flow: the switch to the coarser
}evel k-1 1is made when a pre-assigned number N, of
relaxaticn sweeps on level k has been completed. The
parameter N, . like n , depends on the smoothing factor He
A good choice seems to be Nc=[log.l/logu] . Similarly,
the switch to a finer level k+1 may be made as soon as a
total of Np relaxation sweeps has been made on level X
since the last "visit" to the finer level. (Thus, if
vNcsNF<(v+l)Nc , then Vv switches from k to the coarser
level k-1 are performed before switching to k+1 .) 1In
sone cases NF=N§ depends on the level k .

An example of the flow of a fixed algorithm is shown in
Fig. 2.2. This flow is suitable for solving any problem with a
relaxation smoothing facrtor U 52_p/d (as, for example, in the
standard case of Poisson equation and in'practically all the
problems discussed in this paper). This algorithm performs

a total of 3(M+1l-k) sweeps on level k , k=1,...,M.

The main advantagée of fixed algorithms is 'in saving the
work of computing the dynamic residuals at each felaxation
sweep. This is a signficant saving when the problem is very
simple. For example, for 5-point Poisson problems about 40%
of the relaxation time is saved. In more complicated
problems, like the Navier-Stokes egquations, the saving is

quite marginal.

In simple problems, where the fixed algorithms are needed,
they are as efficient (per sweep) as the "accomodative" ones.
In fact, the latter behave like fixed.

2.6 The Correction Scheme (CS) and Cycling Algorithms.

For linear problems, instez of the Full Approximation

Scheme (FAS) used above, we can use the Correction Scheme, in

which, for k<& , I}}z+lUk is designed to be the correction

to uk+l . The only changes to the algorithm are as follows.
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FIGURE 2.2. Fixed Full Multi-Grid Algorithm.
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In Step F, (2.12) is replaced by Hk=0 , and (2.13) by

£k=1§+l(§k+l-§k+lgk+l) . In Step I replace (2.15) by
k+1_ k+1, _ k+1 k .
uNEW=uOLD+Ik u The tolerance €y computed in Step G
should either require a special calculation by
_ P k. k k+1 _ .k k+1 k+1 L

52 = 2 “{-’ Ik+12 Ik+l£ P_ ” ] (2-21)

or be prescribed by '
-p ]

€y = 2 e, (2.22)
where éz is the value of the (dynamic) residual norm at the
very first relaxation on level 2 . Or else, arbitrarily

small €, may be prescribed for cycling purposes.

"Cycling", in contrast to Full Multi-Grid (FMG)
algorithms, are simplified algorithms which start when a first
approximation u is already given on the finest grid. It
may be a trivial approximation, such as §M=O. Or it may be
the approximate solution of some other, related, "previous”
problem (as in continuation processes, or in evolution
problems, or in optimization procedures, etc.). Thus, in
cycling algorithms one sets k=&=M, €M=€& and starts at
Step C of the above algorithm.

Correction-Scheme and cycling algorithms are usually
used in the first stages of developing a multi-grid code,
because they are simpler to write and debug. In particular,
a cycling algorithm which is allowed to run more cycles than
usually needed ( e& is small, and Step G is skipped) is very
useful since it shows the asymptotic multi~grid convergence
factor. This factor can be independently calculated by the
local mode analysis (see Secs. 4.6, 4.7.5) and is therefore
very basic in detecting conceptual errors as well as bugs in

the program.

A general easy way for converting CS programs to FAS

is described in [B6), Lecture 1l2.
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3. ELLIPTIC DIFFERE:.CE EQUATIONS AND SYSTEMS
The boundary-value problems discussed in this paper are

~elliptic. In this chapter various concepts of ellipticity and
the construction of elliptic finite-difference systems are dis-
cussed. Some of these concepts are important in understanding
smoothing properties of relaxation schemes. Readers interested
only in the practical aspects-of constructing difference
equations are referred directly to Secs. 3.10 and 3.11.

3.1 Ellipticity of the differential system
We first review the concept of ellipticity for a system
of differential equations. This will be defined for linear

systems. Nonlinear systems of equations will be called ellip-
tic if the linearized equations are elliptic. We consider
real systems only: complex systems can be rewritten as real
ones.

In case the differential system (2.la) is 1ineér, we can

write it in the form

Reg XU ) =F (x) , (x €2eRY a=1,...,q), (3.1)

Il &~

B=1

x) ol (3.1a)

laﬁ(i' 1

|-<M

where "X = (Xj,...,%Xq) , 3 = (B10evv083) v X = (Yy,eeesvg),

Bj = a/axj ’ Yj is a nonnegative integer, (j=1,...,4) ,

and

Y -
3= =3

We assume g 3> 1 and 4 2 2

Roughly speaking, a system is to be called elliptic at a
point x 1if the differential equations at X are such that
boundary value problems with these equations are uniguely and
stably solvable, at least in small enough rectangular domains;
or, eguivalently, the system (3.1) is to be called elliptic if
it is solvable for 'all Fourier components Fa(X)==Aa exp(i =z - %},

at least for sufficiently high ||Z|| , where
- - = = 2.}
Bex= Epxy 4.+ Eaxg, 12l = (] f=d)4 '
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‘and & = 1,...,9 . Thus, the ellipticity of (3.1) depends on

the regularity for sufficiently high ||Z|| , of the

characteristic matric

2«(?5,;) = {EGB(EIiE)}a’B=l". ’ (3.2)

e

which is the Fourier transform of (3.1). The characteristic
form (or symbol) and the prineipal characteristie form (or
principal symbol) of system (3.1) are defined, respectively,
as

det 2(x,E) (3.3)

|
1%
{tn
1]

=
| %
(n
]

det'2(x,%) , (3.4)

where det' is the principal part of the determinant defined
as follows: If m' is the maximal degree (in 2 ) of poly-

nomials of the form 21i L . , where (il,...,iq)

L. ees
1 212 qlq
is a permutation c¢f (1,...,q) , then det' 1is the part of
the determinant of degree m' . Thus, L is the dominating

part in L as ||g|| + « . Hence:

The system (3.1) is called clliptic at the point 'x 1if
L(x,Z) # 0 for all real X # 0 . (3.5)

In this generality, the definition is due to Douglis and

Nirenberg [DN].

The condition (3.5) immediately implies that m' = 2m
is an even positive integer (the trivial case m'=0 being

excluded), and
0 < cx [P ¢ |Lix,2)] < crix) |12 . (3.5a)

The system (3.1) is called elliptic of order 2m in & , if

(3.5) holds, with the same m' = 2m , at all points x € Q

It is called uniformly elliptic of order 2m if (3.5a)

holds uniformly, i.e., if there exist positive constants C

and C' such that

121%™ ¢ [D(x,D) ] < c' [[E]|®™, for all real Z#0
and x € Q . (3.6)

c|

n

Elliptic systems of order 2m require m boundary con-

ditions all around the boundary, as can easily be seen by a

 Fourier analysis of the homogeneous system (having the prin-
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cipal part only) with constant coefficients near a hyperplane
boundary. Such an analysis also easily shows which sets of m
conditions are suitable. Such a set is called "complementary"
to the differential equations (see [ADN]).. It can be proved
that any linear uniformly-elliptic system with m comple-
mentary boundary conditions (i.e., with conditions that are
complementary at each boundary point to the principal part

of the differential system at that point) can be solved on any
sufficiently small domain, while on general domains such a
problem has a discrete spectrum (discrete sequence of eigen-
values) and all the smoothness properties one can expect.
Namely, if the coefficients in the equations and in the boun-
dary conditions, as well as the boundary itself, are all
sufficiently smooth, one can prove varicus a priori estimates
for derivatives of U , which are as strong as one can expect.
For example, the following Schauder-type estimate is proved in
[ADN] :

Q

|UB|j+tB+6 §
q m q \
Q N v Q
< K(a£1 lf*mlj_sm,ﬂﬁkgl 'lej-rk+5+ail 1o, 1o ), 3.n
(8 = 1,...,9) ,

where K is independent of U , F and G . Here tQ > 0 and
sg € 0 are integers such that the degrée (in I ) of
E;B(§,i§) is s +tg , where 2&8 contains those terms in £ g

that enter the principal part. r, are integers such that the
order of differentiating U, . in the k-th boundary condition is
at most r,+t,. For any domain D, and any integer J and con-
stant 0<&§ <1, the norm |tp|J+'5 of a function ¢ in the
domain D 1is defined by

b J y |3 o(x) - 3L o(y) |
lol7,6=_1 sup |3l o(x)| + sup — .
j=0 §€D' x,y€D |§-¥|

1Y1=3 M

We see in (3.7) that U is only as smooth as logically
allowed by the boundar . conditions G . This is of course
expected. But solutions to elliptic systems have also the
distinct property that their smoothness in the interior of @
away from the boundary, does not really depend on the smocth-
ness of the boundary and the boundary conéitions. For example;

-21-
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the following Schauder-type interior estimate can be proved:

q g9
Q Q Q
U, SK'(E P | + 7 |u | ) , (3.7a)
8 J+tB+6 as1 a'j-s, +6 = a0
where Q' 1is any compact subset of Q& , and K' depends on
the distance from 23Q2' to 32 . (For the precise nature of

this dependence, see [DN].)

The factors K and K' in (3.7)—(3.75), and in similar
stability and smoothness estimates, do not depend on F , G
and U , but they do obviously depend on 4 , g , m , So and
tB , and on the size and smocthness of the coefficients. K
also depends on r,

J< I’
cients in the boundary conditions, and on the smoothness of

the size and smoothness of the coeffi-

the boundary itself. Except for those, the sizes of K and
K' depend only on some measure of the ellipticity of the
system. We will need such a measure in judging quantitatively
the fitness of difference schemes, so, for the differential

case, we introduce such a measure here.

The largest value of C/C' for which (3.6) holds may be
used as a measure for the ellipticity of the system. It can
also be defined directly in terms of the (full) characteristic
form i(i,é) , & definition which will be more useful in the
discrete case. Thus, we call

E(L,x) = lim min (3.8)

g+ |2l , lIEll=0| L(x,E")

the eflipticity measure of the system (3.1) at the point x
E(L) = mingE(L,x) is called the ellipticity measure of (3.1)
in the domain & . When the principal part of L 1is a power
cf Laplace operator, E(L) attains its maximal value E(L) =1.
when E(L) decreases to 0 ,' the operator approaches local
instability: Some small high-frequency perturbations (in F)
are magnified (in U) much more than other high-frequency

perturbations. An example of such un operator is

2 2 2
L =-c 3 5 32 - . = 3 = {(0<eg«1l) (3.9a)
axl axz 8xd
for which E(L) = € . Operators with such a degeneracy in

-22-



their principal part can be called degenerate elliptic. They
should be distinguished from singular periurbation operators
in which the small parameter (eg) multiplies the entire prin-
cipal part. Typical singular perturbation elliptic operators

are the scalar operators

L =+-¢€d+ a3
% 2 3 : 5 .
= = ¢f 5 + v, + 2)+313x_+"'+ad'a§_ (3.9b)
ax ax 1 d
1 d .
L = -eb + w2 (3.9¢c)
and 2
L = -8d - wo . (3.94)

3.2 Finite-difference operators and symbols

On a uniform grid with meshsize h we introduce the
translation operators T = (Thl”"’Thd) , defined by

T, Y u(x) = T\)1 T\Jd u(x) = u(x+vh)

~h = hl *** “hd "'= - = !

where v = (vl,...,vd) will usually have integer or half-

integer components. In terms of T, we can define the finite

difference operators

h s -
§, = T2, - T,
J hj hj
h h,2 -1
8L, = (8% =T .-2+T. . ,
53 =3 hj hj
the averaging operator
h 5 -5
o= (T2, +T,.5)/2
5 ( hj hJ)/
and the difference-quotients operators
h_ ch, _ ok =k
8y = 8/h = (T -T /b
h h,2 -1 2
9.. = (9. = (T, .-2+T_2)/h
33 = 3 hj ni'/

We will use this notation with obvious modification: In two-

dimensional problems, if (x,y) 1is used instead of (xy,%5)

we will write 32 instead of 3? . In multi-grid descriptions
where a Sequence of grids iﬁ used with mesh sizes hl""'hM ’
we write 3? instead of Sjk . When no confusion can arise,

the superscript may also be omitfed or replaced by a capital

superscript denoting forward or central differencing:



F % . h B -5 .h .C h .n
6F = p2 f 6B = o sh S 2 R eh

hj "3 ' j hj 73 j uJ j

F 5 .h B -3 .h c h .h

CLANEE O LU Ry i S D ST B

57 Thi 5 = Thy °5 i =M%

The finite-difference approximation to” (3.1) can generally

be written in the form

3 h h

1 I b, o, (x,h)Ug(x+vh) = F_(x) ,

B=1 v afv = grl—"— a'= .

- h (3.10)
(x € Qa s, o =1,...,q9)

Here ] 1is a summation over a finite set of v = (Vysreeervg)

v
with Vj usually being integers or half-integers. basv(i'h)
are real functions, usually rational in h . Thus -

h _ v

fog (XD, Ty) = g by gy (x/h) Ty (3.11)
will usually be the finite-difference approximation to
L48(x,3) . In some cases, however, the discrete system is not

such a direct analog of the differential system. Sometimes,
for example, even the number (g} of dependent functions in
the differential system and in the discrete system are not the
same. (The latter will be larger, e.g., when the difference
equations are derived from high order finite-elements.) On
the other hand, even when the discrete system is a direct
analog of (3.1), obtained by replacing each derivative by a
corresponding difference-quotient, and even if the differential
system is elliptic, it does nat follow that the discrete scheme
is also "elliptic", i.e., the discrete system may be unstable.
Thus, it is desired that the ellipticity of (3.10) be defined
independently of the differential scheme it approximates. |

We will sometimes write (3.10) in the compact form

LP b = P, (3.10")
where gh = (U?,...,Ug)T ’ Eh = (F?,...,FS)T and Lh is the

g X g matrix 226
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The characteristic matriz of system (3.10) is the
g *x g matrix

h

h
27 (x,8) aB

{2

i6
(i’hze —)}a,8=l,...,q

} SELRY
-] gy am et o

and the characteristiec form (or symbol) of (3.10) is defined
by

£%(x,n,8) = det 2Mx,0) , (8] ¢ ™ , (3.12)
. i6 i6
where g= (01,...,6d) ’ elg= (e l,..-,e d) ’
8:v = 8,v; + ... +84vy , and lg] = max[lellr...,ledll . The

domain of Fourier components on the grid is restricted to

8] s m, since for integer Vv , exp(if:v) and exp(if'-v)
coincide when 8 = 8'(mod 2m) , i.e., when (ej-e;)/zn are
integers (j=1,...,d) . Note that § here corresponds to
hZ of Section 3.1. Indeed 126 is consistent with 2, o if

and only if
226(§,h,elh5) * Zas(é,ii) as h+0 ,
h

and the order of approximating L by L is p if and only
if _
g lxh,etd) = 2 (x,12) v0MP) L (1<a, Bca). (3.12a)

We will assume that equations (3.10) are properly scaled,
i.e., they are divided through by the proper power cf h so’
that, for n - 0 and fixed = , ih(ﬁ,n,nE) remains
bounded while ih(i,n,ni)/n is unbounded. The order 2m of
the scheme (3.10) is defined as the highest order of v in
the terms of det(lgs) . That is, 2m 1is the lowest integer
for which there exists a permutation (il,...,iq) and com-

ponent |8} ¢ ™ such that

lim n2m 121 (i,n,elg) - zhi (i,n,elg) £0 . (3.13)
n>0 1 g

It is easy to see that if 128 is consistent with 2&8 then
the order of (3.10) is the same as that of (3.1).
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The reduced symbol of (3.10) is defined by

v -~
LP(x,n,8) = h®™ iM(x,n,8)

and the principal symbol is defined as

Lhix,0) = IPix,0,0) . (3.14)

Ah
Note that L

will be the symbol of the discrete approxi-
mation to theAprincipal part of (3.1), i.e., the part rep-
resented in L . Thus, another way of defining the principal

symbol is as Icllows: There clearly exist integers SyreeeS

ql
tl,...,tq such that, for every permutation (il,...,iq)
that satisfies (3.13), the order of h-l in lgi is Syt
QL a
Define the principal symbol of the term 228 by
s _+t .
fhgt8) = limn @ BT b (x,me*dY (3.14a)
n+0 2 a 2

(Note that for some terms the principal symbol may vanish.)
Then the principal symbol (3.14) is also given by

A

th = get Px,0) (3.14b)

A . .

where 21 = {QEB} is the g x q prinecipal characteristic
matrix.

3.3 T-Ellipticity
The concept of ellipticity for difference systems is more

complicated than for differential ones. To distinguish bet-
ween several possible variants of this concept we add prefixal
letters to the adjective "elliptic". The system (3.10) is
called T-elliptic at x if there exists a positive < (x)

such that

A
12 (x,8)] 3 x(x) |8|®™ ,. for all |e| < 7 . (3.15)

h

This definition corresponds to (3.5a). If L is consistent

with an elliptie differential operator L then the ineguality
holds automatically for small |8] , and hence (3.15) is
equivalent to the weaker requirement

fh(x,6) # 0, for all 0 < |g| ¢ n, (3.15a)

which is the analog of (3.5).
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Thomée {T3] and Thomée and Westergren [TW] toox (3.15a)
as their definition of ellipticity for scalar equations

(a=1, Lh = 2?1) . This requirement by itself is'not enough,
however. For example, the scalar operator

h _ .h _ h

LY = all Thy 955 (3.16)
has the symbol

Ah g 16,

L7(8) = -(L-cos €,) +e (1 -cos 6,)
which clearly satisfies (3.15a), but Lh is consistent with
the hyperbolic differential operator 3%-—3% (the wave
operator). In effect, however, definition (3.15) is used in

[T3] and [TW]. An earlier version ([T2] introduced the concept
of ellipticity for symmetric scalar homogeneous operators with
constant coefficients, i.e., for the case g=1 ,

- A A A . . 0
blli(i'h) = h zmb_\i ’ bﬁ = b'ﬁ . In this case if Lh is con-

sistent with any differential operator L then T-ellipticity

is equivalent to the reguirement
£P(x,0) > 0, forall 0 < |6] ¢m . (3.17)

Operators satisfying (3.17) will be called here symmetric-
elliptic. ’ ‘

Related definitions can be added here: The system (3.10)
will be called uniformly T-elliptie in the domain Q 1if its
coefficients are uniformly bounded and there exists a positive
constant x independent of x for which (3.15) holds at all
points x € @ . The largest such constant «k 1is called the
T-elliptieity constant. The system (3.10) is called semi-T-

eliiptic of order 2m if

"

P (x,0) | 3 P, (x,8) for all |e] < = (3.18)

where Pom is a non-negative homogeneous polynomial in 9 of

order 2m .

Using Fourier transformation it is easy to see that for
homogeneocus {principal part only) Lh with constant coeffi-
cients, the semi-T-ellipticity (3.18) is equivalent to the
a priori estimate

h, h
e, @M < oLty C(3.19)
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holding for all grid functions Eh vanishing outside a
bounded domain. Here C is independent of gh and h , and

q .
et = LD lsswi® | (3.20)
=1l x

the second summation being extended over all points x where
uj(i) is defined. 1In particular, T-ellipticity is equiv§lent
to an a priori estimate of all 2m-order derivatives of u in
terms of the data thh Such estimates can then be extended
further, using methods analogous to those used in the differen-
tial case (estimating lower-order derivatives of gh in terms
of higher-order derivatives of u? and in terms of HEF'! ,
perturbing from the constant-coefficients case to the
continuous~coefficients case, etc.). For the scalar (g=1)
case this is done in [TW]. Such methods, however, yield only
interior estimates, similar to (3.7a). Estimates near boun-
daries, like (3.7), are much harder to get in the discrete
case, where methods like coordinate transformation (used to
transform boundaries to hyperplanes) are not applicable.
Boundary estimates are available only for special classes of
discrete elliptic problens (see [TS5] and (T2]).

3.4 Quasi-ellipticity

In approximating elliptic systems, especially in the non-
scalar (g > 1) case, condition (3.15) is often violated only
near |6] = m . This happens when central differencing is
used to approximate odd-order derivatives in the principal
part (e.g., central-differencing approximation to Cauchy-
Riemann equations, see Sec. 5.2). 1Instead of (3.15), the
weaker condition

2R (2,00 | 2 x(x)( czi sin’

j=1
is satisfied. Systems for which (3.21) holds will be called

60" , for all real 8, (3.21)

quasi-T-eZZiptié. If x is independent of x the system is

uniformly cuasi-T-elliptic.

Using quasi-elliptic approximations, the results should
be properly interpreted (sometimes they are not). Namely, the
difference solution is meaningful only after proper averaging.
Indeed, the operator is unstable for some Pourier components
exp(i8-x/h) for which |8} =1 ang Lh(ﬁ,g) =0 . A small
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perturbation (in F) in these (or in neighboring) high-
frequency cohponents may cause very large high-freguency
changes in the solution (which corresponds to nothing of that
sort in the differential case). The averaging should ligui-

date all such Fourier components. One such averaging is the

operator o | . ol
; ~d={vyl= e =]V
h,2 h,2 1 at, v
W)™ .o (ug)™ = 2 Ty
1 a X}Sl . =h

For properly averaged solutions of uniformly quasi-T-
elliptic operators, stability results and a priori estimates
can be obtained as for T-elliptic operators. But round-off
errors may have here much larger effect, and the truncation
errors will usually correspond to those obtained by T-elliptic
operators on a coarser grid. Quasi-T-elliptic operators are

therefore not recommended (but see Sec. 3.11).

3.5 S-ellipticity

The notion of T-ellipticity depends too much on vanish-
ingly small meshsizes. One deficiency, for example, is that
it allows operator translation. Namely, if Lh is T-elliptic,
so does also ThXLh , for any fixed v . This should certainly
be avoided at finite mesh-sizes, since it would allow, for
example, two difference equations at two neighboring points to
contradict each other ( TthhUh(i) = Fh(ﬁ) contradicting
LPUP (x+vh) = FP(x+vh) when F"(x) # FM(x+vh) ). This
situation is avoided in [T3] and [TW] by requiring the coeffi-
cients bv(irh) to be continuous in x , so that the
operator cannot have different translations at different points.
This way of avoiding translations is not fully satisfactory
since, in principle, we may like to use discontinuous coeffi-
cients in some problems; there is nothing basically wrong in
certain discontinuities. Moreover, in this way transl:tion is
still allowed, although it is required to be the same trans-
lation at all points. This is inconvenient in the'studf of
relaxation schemes, where a mcre definite relation is required
between the location of an unknown and the location of the
equation relaxed by it. To avoid translations, the following
modification of the definition may be used.
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As 8 changes continuously from 6° to 8'Z6°(mod 2m),
the principal symbol ﬁh(g,g) traverses a closed curve (a
loop) in the complex plane. The operator (3.10) is said to
have index 0 if no such closed curve circles the origin
(i.e., all such loops have index 0 ). The operator (3.10)
is called S-elliptic (respectively semi-S-elliptic, unifcrmliy
S5-elliptic, quasi-S-elliptic) if it is T-elliptic (respectively
semi-T-elliptic, uniformly-T-elliptic, quasi-T-elliptic) and
has index 0 . ©Note that (3.16) has index 0, hence vanishing
index is not enough for ellipticity. Note also that symmetric-
T-elliptic operators are S-elliptic.

Every S-elliptic operator is of course T-elliptic. Con-
versely, every T-elliptic operator can be translated to one
end only one S-elliptic operator. Indeed, if Lh is -
elliptic and if the index of the loop

{Lh(i,g) ; 0 g ej < m and 8, is fixed for k# 3}
is u., , it is easy to see that I;E Lh

5 is S-elliptic.

3.6 R-ellipticity

S-elliptic operators are inconvenient in constructing
numerical approximations to differential equations. The
following concept will be more useful.

The system (3.10) is called” f-elliptic iff

Ah

Re LP(x,8) > x(x) |8]%™ , for all gl < m , (3.23)

anijcrmly R-elliptie iff «k{x) 1is independent of x , semi-
F-elliptic iff (cf. (3.18))

A
Re LM(x,8) » P, (x,8) ,  for all 3] <7, (3.24)

and gquasi-R-elliptic iff
A .
Re L h(ﬁ,g) 2 K(x) ( Z sinzej)m ’ for all 6 . (3.25)
j=1
Note that if L?  is consistent with an elliptic operator

L then L% is R-elliptic iff

*
The definition in [B5] is modified here. What we called there
R-elliptic should more properly be called strongly-R-elliptic,

since it 1is related to strongly elliptic differential systems
° (see [ADN], page 43).
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A
Re L™(x,8) > 0, for all 0 < |8] < 7 . (3.2,

The condition (3.26), however, is not enough by itself. For
example the operator

h_ _sh 2,02 _ _h 2. .h 2
L7 = -a) +h (M = o) 33)

satisfies (3.26), but is only semi-R-elliptic.

(3.27)

R-ellipticity clearly entails S-ellipticity and hence
allows no translation of the operator. On the other hand, all
" S-elliptic systems used in practice can easily be made R-
elliptic by multiplying some of the equations by suitable
constants. Every symmetric-elliptic operator consistent with
any differential operdtor is clearly R-elliptic. But R-
elliptic operators are not necessarily symmetric. An example
is the asymmetric operator

h _ _ .
L = 311 ~-a Th,l 355 (3.28)

which is R-elliptic for 0 < a < 1

An important advantage of R-ellipticity is its additivity
in the determinant. 7That is,. in constructing the difference
equations it is enough to construct each one of separate parts
of det(RSB) to be R-elliptic. 1In the scalar (g=1) case, in
particular, the sum of R-elliptic operators is also R-elliptic,
and hence R-elliptic operators can be constructed term by term.
(see examples in [BS], Sec. 5.2, or Sec. 3.10 below.)

In the non-scalar (g>1) case, ellipticity is not additive:
The sum of elliptic operators is not necessarily elliptic.
But we can still exploit the additivity in the determinant.
(See for example the constructions in Sections 5.2, 6.2, and
7.2). ’

There is a special case of ellipticity, called strong
ellipticity ([ADN], p.43), which is additive even in the non-
scalar case. The system (3.10) is called strongly R-elliptic
(or strongly elliptie) if (i) s, =t, (see Sec. 3.2),

(11) (Lhu)a and u, are defined on the same grid points,

and (iii)
q R q 2t
An - o 2
Ry ] 8 .(x,806,8, > x(x) T 8] “lg_] : -
e o, B=1 af a~B as1 a | (3.29)

for all complex £ # 0 and real 8 ¥ o,
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where -{328} is the principal characteristic matrix (3.14a).
Scalar R-elliptic operators are of course strongly elliptic.
It is clear from (3.29) that the sum of strongly elliptic
difference systems is also strongly elliptic. Hence,
strongly-elliptic operators can be constructed term by term.
On the other hand, important elliptic systems, such as Stokes
and Navier-Stokes, and Cauchy-Riemann equations, are not
strongly elliptic and thus cannot have strohgly elliptic
difference approximations.

Through Fourier transformation it is easy to see that,
for homogeneous (principal part only) Lh with constant
coefficients, strong ellipticity is equivalent to the a priori
estimate

; cii ) G e o] o e § 5w ) @y (x (3.30)
S a=1 j=1 x J ¢ a X
holding for all grid function vanishing outside a bounded
domain £ . C 1is independent of h , uh and @ . Por the
scalar symmetric case, relation (3.30) is derived in ([T2],
leading to convergence theorems. Similar theorems can be
derived for general strongly elliptic systems.

3.7 V-ellipticity

Suppose the solution Uh of (3.10), with suitable homo-
geneous boundary conditions, belongs to a normed linear space
gh , with norm || {l . Suppose also we can define the

bilinear form

a
Pt - T Viw et (3.31)
=1 x€l
A . . h h h,
(This is of course possikle only if vj and (L'u )j are

defined on the same set Q?

is called V-elliptiec if al is continuous uniformly in h and

of points x .) The system (3.10)

t.2re exists a positive constant o independent of h such
that

h,h h hy 2 b
, , £ :
at(ut,ul) 3 oallul| or all u €V (3.32)
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Thus, in a suitable norm, strongly elliptic principal-
homogeneous operators are V-elliptic (see (3.30)). The
analysis of V-ellipticity is more developed than that of other
ellipticity concepts, especially in finite element formulation
(see [Cl]). V-elliptic differential problems can be stated as
variational problems. The usual procedure is to base the dis-
cretization on the variational form in a suitable finite-
dimensional approximation space, so that thé discrete problem
is automatically, V-elliptic and has some relations to the con-
tinuous problem which are very useful for theoretical analysis.
Oon the other hand, V-ellipticity is not general enough, and
important elliptic systems, like Cauchy-Riemann Stokes and
Navier-Stokes, are not V-elliptic. The latter two can be
reformulated as V-elliptic problems (see [Tl]), but that
. reformulation is not suitable for the fast solution methods
described below. (The solution process cannot stay in the
divergence-free space !p , and explicit use of the pressure
function is needed.) It is often the case that the most
efficient finite-difference discretization of a V-elliptic
problem is not quite V-elliptic itself. The construction of
discrete approximations via the variational form is usually
much more expensive in computer time and storage than direct
differencing. Such an expense is tolerable when slow,
storage-expensive solution processes, like elimination, are
used. But when fast, storage-economical algebraic solvers,
like the multi-grid solvers, are used, the usual finite-element

assembly processes turn out to be by far the most expensive
part of the calculations.

3.8 Scaled Ellipticity

For various purposes the above ellipticity definiticns do
not gquite capture the stability properties we may be interested
in. The definitions are given in terms of the principal part
of the difference equations, and are therefore applicable to
equations with lower-order terms only if the mesh-size h is
"sufficiently small". In differential equations, thé-érincipal
part indeed dominates the local behavior of solutions (whereas
global behavior on large enough domains may be determined by

the lower-order terms). In difference equations, by contrr
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unless the mesh-size h 1is "sufficiently srall", the lower-
order terms may dominate even the local behavior, since there
exist no solution scales smaller than h . Only when h s
small enough the principal part dominates the local behavior,
and the above concepts and theory (e.g., (T3] and [TW])
applies. In many cases, however, those “sufficiently small"
mesh-sizes are too small to be practical. In particular in
singular perturbation operators, such as (3.9b), the prin-

" cipal part dominates only when the mesh-sizes h is small
compcred with the size (g) of the perturbation (which in
Navier-Stoke equations, for example, is proportional to the

inverse of the Reynolds number). Furthermore, in such and
other problems the form of Lh may depend on h : Central
differencing may be used at sufficiently small h , while
"upstream" differencing will be employed at larger h . The
stability properties at h - 0 are then clearly irrelevant
for studying the schemes at larger values of h . Moreover,
even at moderate values of € , a theory for "sufficiently

small® h will not be suitable for rulti-grid schemes, where
large values of h always participate in the solution

process.

Thus, an improved definition of ellipticity for discrete
equations must include lower-order terms. One way to handle
this (see [B2), p.13) is to regard small parameters (like €
in the difference equations as being functions of h (e.g.,

£ = ahs ). In particular, small coefficients in the

a
aBY
differential system (3.1) may be regarded as functions of 1,
or as scaled by h , namely
s
aaBl aan h
Differencing the differential equaticn in this form will

. (3.33)

change the dependence on h of the coefficients basv(i’h)
in (3.10), so we can write them as new functions BQSC(E,h)
This will tren change tre dependence on h of 226 anz LD
and the order 2m of the system, which will hence be denoted

°oh 2h
symbol will be defined by

and 2m , respectively. The scalfed principal
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[}

h 2m

o . Sh R X
L"{x,8) = lim n L (x,n,8) . (3.34)

n+0
The system (3.10) will be called scaled T-elliptiec at x 1if
there exists positive «(x) such that

lih(g,g)l 3 K(x) ]glzm p for all |®| s 7 . (3.35)

o

A
Employing I} instead of L
semi-T-elliprie, scaled quasi-T-elliptic, scaled S-elliptic,

h , we can simiiarly define scaled

scaled semi-S-elliptic, scaled quasti-S-elliptic, scaled R-
elliptic, scaled semi-R-elliptic, scaled quasi-R-clliptie,
scaled strongly elliptic and scaled V-elliptic operators.

Uniform ellipticity of all these kinds is similarly defined,
with "ellipticity constants" « independent of x .

As a simple illustration, consider the central-

differencing approximation to' (3.9b)

h h h.h
LV = - . RTI-I 3.37
€ L BJJ + I a]ujaJ ( )

whose symbol is

~h 4¢ 2% 4

L(8) = gf L sin®™ 5 + g L ay sin Gj . (3.38)
The principal symbol is

2 85

= . (3.39)

For the scaling € = nh , the scaled principal operator is

£h(e) = 4¢ T sin

°n 29 . .
3] = . . .
LY(8) 4n T sin 1} + 1z ay sin 8J ' (3.40)

o
so that Re Lh(g) > (4n/dﬂ2)|§|2 , and the operator is scaled
R-elliptic. For any scaling ¢ = o(h) , however, the symbol
is

°h . .
L(8) =1L a; sin Gj .

which can clearly vanish for various 0 < [8]| ¢ m . Hence
{3.37) is not scaled elliptic for € = o(h)

Difference approximations to (3.9b) which are R-elliptic

uniformly in € are described below (Section 3.10).

Scaled ellipticity is very useful in discussing approxi- .
mations to singular-perturbation operators and their multi-~
grid solutions ([B5]. A thorough analysis of scaled T-elliptic
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differgnce approximations to scalar (g=1) singular pertur-
bation problems has been carried out by Frank [Fl]-[F6]. He
writes the difference equations in terms of the singular-
perturbation parameter € (properly defined) and uses the
scaling ¢ = p_lh . Furthermore, he shows [F4) that ellip-
ticity and coerciveness conditions are both necessary and
sufficient for certain a priori estimates to hold uniformly
in 0 < p < » . Also defined is a "weak" ellipticity concept
which guarantees uniform stability only in an interval

0 < 61 € P € py <@, The a priori estimates are only proved
for the infinite domain (= md) or for a bounded one-
dimensional (d=1) domain, (i.e., an interval), but the ellip-
ticity concept has of course wider applicability. It applies,
however, only to the case where both the perturbed differen-
tial operator L and the reduced operator (i.e., the lower-
order operator obtained from L by dropping the higher-order
perturbation) are elliptic. Unfortunately most singular
perturbations in fluid dynamics, and even simple problems like
{3.9b) (for d>1), are not of this kind.

3.9 Measures of discrete ellipticity: Stability of high-
freguencies

Note in example (3.37) with the scaling € = nh , that

for any fixed n the operator is formally scaled-elliptic,
no matter how small 'n is. Indeed, there is no critical-
value of n Dbelow which the operator starts to be "bad”.
(For n < g = % max(lal,lbl) the operator is no longer of
"positive type", but the discretization errors for n = .9no
are essentially the same as for n = 1.1 Ng + contrary to a
common belief. See [F4].). It is clear, however, that for

n « max(lal,|b]) the scheme (3.38) behaves as badly as a
non-elliptic scheme. Namely, small high-frequency pertur-
bations (in Lhuh) cause unduly large (even though boundéd)
high-frequency changes in uh . Thus, for practical purposes,
what w2 should really be interested in is not only whether
Lh is elliptic or not, but mainly how much "elliptic" it is
at a specific value of h ; i.e., by how muchn high-frequency
modes (modes with wavelengths comparabie toc h) are unduly

magnified by (Lh)_l . Lower frequency modes are usually
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taken care of by the consistency of Lh with an ¢lliptic

operator L. Indeed, some such modes may necessarily be
unstable, since they approximate unstable modes of L.
(Unstable modes exist in indefinite operators L, such as
(3.9d) with large enough w .)

@ .
Thus, in some amalog to (3.8), we can defire the hT-

ellipticity measure of P oat X as

ET(L ,_)i) =C min h ' (3.43a)
prgief, 8" |sm ' L7 (x,h,8")
where |6 = maxlej] . We choose the normalization
C = 2d4/(l-cospm) , so that for the five-point Laplace
operator we get E% =1 . The choice of ¢ 1is somewhat arbi-

trary. For multi-grid purposes a natural p 1is the mesh-size
ratio hk/hk_l , because the Fourier components exp(ig-i/hk)
in the high-frequency range (hy/h, )7 < |8] ¢ ™ are exactly
those modes on grid hy which are not "visible" (i.e., they

alias with lcwer modes) on the coarser grid hk-l . Hence we
will take hereinafter

p=3., C=2a. ' (3.43b)
The hT-ellipticity measure of Lh in a domain Qh is
defined as

h, h, _ -h, h o h, _h

En(L7) = Eq(L7,Q) = min E (L ,X) . (3.44)

X€EQ
Various other, equivalent measures for the local
(scale h) ellipticity could be similarly introduced. For
R-elliptic operators Lh , a useful measure will be the 13-

elliptieity measure

~h
ERl,x) = 24 min Re L”(x,h,8) .
kil ~h . .
5¢[0[,[8'[¢m Re L"(x,h,8")

The precise value of EP  is of course not important, but its
order of magnitude is a very significant property of Lh We
will say that the difference system Lh has good h-ellipticity
if Eh(Lh,i) are not small (compared with 1). It implies

stability of the high-frequency modes.
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The h-ellipticity measures are defined for a specific
mesh-size, the very mesh-size chosen for the actual com-
putations. It should be emphasized that Eh(Lh) > 0 does not
imply ellipticity of Lh . In fact, Lh may be consistent
with a non-elliptic differential operator and still have a
good h-ellipticity measure. An gxample is the hyperbolic
oeprator (3.16). Conversely, soﬁe elliptic operators will
necessarily have bad h-ellipticity measures for some (large
enough) values of h . An example is any difference approxi-
mation to (3.9d) for mesh-sizes h = O(w™ %) . Indeed, at
such values of h , usual difference equations cannot produce
good approximations to (3.9d4), since the grid does not resolve
the natural oscillations of the continuous solution (whose

wavelength is 21/w ).

The one case in which small h-ellipticity measures for
all values of h should give no trouble is when Lh approxi-
mates a degenerate elliptic differential operétor L , such
as (3.9a), which itself has a small ellipticity measure
E(L,x} = € . The usual O(hz) approximation to (3.9%a),

h_ __.h _.h _ _.h
LT = -€d]) =35y = eee = 33q . (3.46)

indeed has Eh(Lh,g) = O0(e) . It is of course possible to
construct O(hz) approximations to (3.9a) which have good
h-ellipticity. For example,

h _ __.h 2,.h 2 h h
L = sau.+ h (all) - 322 - ve. = 23

But (3.46) is not necessarily worse than (3.47), since its

(3.47)

high-frequency instability reflects a similar behavior of the
differential operator. (A nice multi-grid possibility is to
use (3.47) in relaxation (if pointwise relaxatiocn is desired)

and (3.46) in the residual transfers. See Sec. 3.11.)

In fact, all we need from Lh is that its h-ellipticity
measure be good in the same sense in which the measure of L
is good. For degenerate operators this means good semi-h-
ellipticity measures. The semi-hR-ellipticity measures, for

example, are defined by

Re L%(x,h,8)

Eg(Lh,5:¢) = C min
<lel,le" s
,8'€¢d

T , (3.48)
Re L(x,h,8")

S E]
1D 1D
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where ¢ is a suitable subspace. In case of approximating
{(3.9a), for example, ¢ should be the subspace {61 =0} ,
since it is the largest ¢ yielding

2(L,%x;9) = lim
\ e I

3.10 Construction of elliptic differcnce systems

The two main considerations in selecting difference

approximations to a given differential operator are accuracy
and stability. Accuracy reflects the quality of the approxi-

mation for smooth components, i.e., for Fourier components
exp(i Z+x) with 3I « h-l Its most significant measure is
the order of approximation p (see (3.12a)). On the other

" end of the spectrum, Fourier components with |Z| > m/h are

not visible on the grid and are not approximated at all. Even
the highest frequencies that are visible cannot have a good
approximation, and there is no point in trying too hard to
approximate them, since slightly higher frequenéies are not
approximated anyway. All we need in the high frequency range
{r/(2h) ¢ £ ¢ 7/h , say) is that the difference solutions
cannot be much larger than the differential ones. For this
all we need is the high-frequency stability of the diffcrence
operator, discussed above (Sec. 3.9).

To construct p-order approximations to (3.1l), one can

(p))

simply approximate each & _,{x,3) by 2&_,=2 .(x,9 where

(p) . C e ‘ aB Tag ‘
aj is any p-order approximation to aj , not necessarily
the same at all occurrences. Most such apprcximations will
not be stable. So the problem at hand is ncw fo construce
such p-order approximations which will have also jyood h-
ellipticity measures {although unstable approximations can be

used in multi-grid processes; cf. Sec. 3.11).

3.10.1. Central approximations of order p=2 are widely used.

For general even p , the simplest (i.e., containing minimal
number of points) p=-order central approximatiocns to the first

derivative 3. and the second derivative -ajj are given by
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/2-1
[p} _",n P 1 _1 .h .k
3P = 8] DTS, Al -7 635 (3.49)
or
2-1
(p)C p/ 1 .h k- ,
: =3 B, (=~ 6.. 3.50
35 3 kzo k(=7 855 ( )
and
2-1
(p) n P/ 1 1 .h .k .
-3tPl o 40 =B (-= &0, , (3.51)
e %33 kZO BT Bk (77 65
where A. =B. =1, A, = (lL-=)A B, = (1+-—) '8
r 0= P07+ BT 2k’ Sk-1 ' "k 2K k-1 '
and a? ’ 8? ’ 3?j and é?j are defined in Sec. 3.2. The

first missing term in each summation, evaluated at some inter-
mediate point, gives the local truncation error (see [B5]).
Note that (3.49) is centered at half-way between grid lines,
while (3.50) and (3.51) are centered on grid lines. Odd-order
central approximations do not exist; the simplest formulae

always yield the next (higher) even order.

The symbols corresponding to ha? ' ha§ ' -hza?j and
- % G?j are, respectively, 2i sin(ej/?) , 1 sin ej '
4 sinz(ej/Z) and sinz(ej/2) . Hence it is clear that the
symbol corresponding to agp] is iES , where hiI. =
e.4—o(e§+l) is real and does not vanish in the relevant range
0 < ]ejl ¢ ® . Suppose we can use the difference scheme

h [p] =

QQG = QIO.B( ) ’ (QIB = ll"'lq) . (3-52)
The discrete symbol Lh( x,h,8) will then coincide with the
differential symbol ~( 33) . where E; vanishes if and

only 1if - ej does. Hence (3.52) preserves all the ellipticity
properties of the differential system. Moreover, every
degeneracy in Lh will reflect a similar degeneracy in L
For k-order derivatives (aj)k the approximation (3.52) uses
k(p-1)+1 grid points, whereas the most compact p-order
approximation needs k+p-l1 points. Hence, for k > 1, (3.52)
is most compact only for p=2 . It can usually be replaced
by the most compact operator, without destroying the ellip-
ticity properties. Indeed, the most compact approximation to
(aj)k is obtained from (a§P1>k by dropping all differences
of order higher than k+p-2 . It is clear from (3.49) that
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all the terms droppec have in the symbol the same sign as the

remaining terms.

The main trouble with (3.52) is that it cannot always be
used. For homogeneous (prihcipal term only, operators without
mixed terms, the grids can often be "staggered" so that (3.52)
is applicable (see examples in Secs. 5.2 and 6.2). Consider,
however, the approximation of the scalar operatqr —eajj+aaj.
The approximation (3.52) to the first term is centered at grid
lines, while for the second term the centering is half-way
bctween grid lines, which is a contradiction. The central
approximation of this operator, and of (3.9b) and similar
operators, must employ (3.50) together with (3.531). The
trouble here is that for large values of ah/e this operator
does not have good h-ellipticity measures: ih(x,h,n) + 0 as
ah/e .+ » . Thus, as long as the terms using (3.51) outweigh
those of (3.50), the operator is stable. But the stability
practically disappears {for ej = 1) for large ah/e

3.10.2. Upstream differencing. Consider a general scalar

(g=1) differential operator L. A convenient way of con-
structing p-order R-elliptic approximations Lh to L , with
good hR-ellipticity measures, is to construct separately a p-
order Semi-R-elliptic approximation, with good semi-hR-
ellipticity measures, to each term in L (except of course for
those mixed-derivative terms which canpot have R-elliptic
approximations. If such derivatives are present, however,
there must also be present non-mixed derivatives of the same
order to make up for it). Assume the diffcrence eguations
are centered at grid points. Then the simplest p-order cen-
tral approximations, such as (3.50) and (3.51), are semi-R-
elliptic, and wouldAgive R-elliptic Lh whenever L 1is ellip-
tic. The h-ellipticity measure may, however, be bad (like in
(3.37), for large h Z[aj| /€) . Indeed, the simplest central
" p-order approximations to any even (non-mixed) derivative, such
as (3.51), all have good semi-hR-ellipticity m=asure. But the
.corresponding approximations. to the odd derivatives, such as
(3.50), have measure O . (Good semi-hT-ellipticity measure
would not help, since il is not additive.)

-41-



Good hR~ellipticity measures for approximations of odd
derivatives can be obtained by adding to the central approxi-
mation a dissipative term of high enough order and suitable

-magnitude. For example, p~order approximation to the first
derivative is obtained by adding to (3.50) any O0(l) positive
multiple of either h-l(-égj)p/z or a?(-d?j)p/z or
-3?(_5?j)9/2 All these terms have good hR—ell@pticity
measures. The first of them uses the same grid points used by
(3.50), but reduce the order of approximation by 1. The
latter two retain the approximation order p. The choice of
the positive multiple, and the choice between a? and -8§ r
can be based on the desire to have most compact formula, i.e.,
to have p-order approximations to 3., based on p+l grid-
points. With such choices the p-order approximations then
turn out to be

[p/2]
{p)U c 1 .h .k
9. = 3. - B 5 6L +
J i J kZO k(4 33)
2 1 h [{p+1/2]
= -= 8., . 3.5
R Blp/21 (77 &5 % (3-33)
where o¢. = s for odd g, = hac -1 6h s for eveh
3% P 95 795 T3 %55 8 i
and sj is the sign of the coefficient of the approximated
aj . (This sign should of course be taken from the R-elliptic
form of the differential equation, e.qg., the form in which
3.. terms have negative coefficients). It is easy to see
that sjaép)U is R-elliptic and has good semi-hR-ellipticity

measure.

For p=1 and p=2 the operators (3.53) are completely
one-sided, e.g., using backward differencing when the coeffi-
cient of aj is positive. Since in applications that coeffi-
cient usually represents the j-component of some velocity,
such differencing is called upstream (or "upwind'") differ-
encing. (Hence the superscript U in (3.53).) ©Note,
however, that for p > 2 the operators are no: one-sided;
some downstream grid-points are alsco used. The one-sided p-
order operators based on p+l grid-points are not R-elliptic
(for p>2): their use would produce unstable ccomputations.
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3.10.3, Artificial viscosity. Instead of upstream differ-

encing, one can use central differencing and just add a gene-
ral dissipative term, of suitable order and magnitude, not
attached to any particular differential term. The simplest
such term is either C(h)Zj(-G?j)p' or C(h)(~£.62,)P"

3733
where C(h) > 0 is comparable in magnitude to the coeffi-

’

cients of the central difference operator, and p' 15 just
high enough to maintain the desired approximatioh order. This
procedure is often simpler than upstream differencing since
here the difference formula does not depend on the signs of
various coefficients. Also, the h-ellipticity measure is in
this way guaranteed to be good, while in upstream differencing
it may have degeneracies. For example, in upstream approxi-
mation to (3.%b), degeneracy occurs when some aj are much
smaller than others. 1In fact, the artificial viscosity is
exactly equivalent to upstream differencing in case the grid
directions happen to be such that all aj' are equal.

The artificial viscosity (whether explicit or through
upstream differencing) makes it possible to treat singular
perturbation problems even when the reduced problem is not
elliptic (e.g., (3.9b) for large hI lajw/s , or Navier Stokes
equations for large Rh|U|) , in contrast to the cases treated
in {F4]-[F6]. Such problems usually have thin transition
layers, like boundary layers, turning point, shocks, etc. The
introduction of artificial viscosity causcs these layers to be
smeared over several mesh-sizes (and hence resolvable by the
grid). Multi~level adaptive techniques would use finer levels
around such layers, thus making them as thin és needed (see
(B5]}. In this way the total artificial viscosity added to
the system can be made small, since away from such layers the
solution U is smooth and the artificial viscosity terms are
therefore small (their magnitude being 0(hP) relative to other
terms).

3.10.4. Divergence forms. The differential equations often in-
clude terms like -Bj(aaj) . This form is called divergence
form or conservative form, since it usually results from phy-
‘sical conéervation laws. It is best to discretize the term
directly in this fo;m (rather than in the form —aajj-(aja)aj),

‘because that will produce difference schemes with conservation
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properties similar to the differential schemes and hence with .
guaranteéd éonvergence (see [LW]). Also (for elliptic
systems) the divergence-form discretization can conveniently
be made in terms of central differencing only. 1Indeed, using
(3.49) for any even p we have the compact p-order central

approximation to -aj(aaj)

_ (pl _ (_.Ip] (p] )
(-35(ady)) (=357 (aa;Ph1, (3.54)

where | ]p denotes the removal of all terms of order higher
than O(hP) resulting from the product. (3.51) is the
special case a3l . For p=2 (3.54) is the familiar oper-
ator -a?<aa?) . For p=4 ,

(4]

_.h,_1.:h h
(—aj(aaj)) = aj}a 73(6jja-+a6.

h
. S .55
JJ))aJ (3.55)
In the sense of [LW), (3.54) is always conservative, since
)
has a good semi-hR-ellipticity measure (in the sense of (3.48),

where ¢ = {ei=o for i#3} , and for smooth a).

is a common left-factor in all its terms. Also, (3.54)

At points away from the boundary, the less compact for-
mula -8!p](a3{p]) may actually be simpler and more efficient
to evaluate than (3.54). This formula is of course also con-

servative and with good semi-hR-ellipticity measure.

3.10.5. High order approximations near boundaries. The

various formulae above, in particular the higher-order (i.e.,
p>2 if central, p>1 otherwise) or the non-compact ones,
are often inapplicable near boundaries, where not enough
neighboring grid points are available. We need then to
replace some points in the difference operator by others,
maintaining the same approximation order. This can generally
be done by adding 0(hP) terms to the operator. Terms which
are semi-R-elliptic are preferable, where possible, but they
do not seem to be necessary. Generally, the theoretical
requirements near boundaries are far less clear, and reguire

further investigation.

Another possibility is to use lower-order approximations
near boundaries, using a finer grid there to make up for the
lower accuracy. The multi-level adaptive technique [BS] will
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do it automatically when the restriction on the approximation °
order is imposed. For certain error norms, lower—orde£
operators near boundaries can be used without grid refinement
and without spoiling the global order of approximation (cf.
(BH)). The best possibility may be the combined use of low-
order elliptic and high-order non-elliptic approximations, as
in Sec. 3.11l.

3.10.6. Non-scalar systems. The construction of p-order R-

elliptic approximations with good hR-ellipticity measure to
non-scalar (q>1) operators can again be done term by term,
except that the terms now are those in L (the determinant
of the matrix operator). See example in Sec. 5.2. When L
is a product of elliptié operators, one can construct
separately approximations to terms of each of these operators.
See examples in Sec. 6.2 and 7.2.

3.11 Multi-level differencing

An important feature of the multi-level fast solvers is
the effective separation between the treatment of high-
frequency modes (modes with %ﬂ < |8] s m, affected only by
relaxation) and low-fregquency ones (affected mainly by the
coarse-grid corrections; the lower the mode, the less its
amplitude is changed by a relaxation sweep). This feature can
be exploited in various ways. For example, the conflict bet-
ween using more accurate central differencing or the corres-
ponding, less accurate but more stable, upstream differencing
has a simple multi-level resolution. Upstream differencing
is much better for the highest frequencies and should there-
fore be used in relaxation. The central differencing is
better for lower modes (the lower the mode, the better it 1is)
hence it should be used in the residuals transfer (i.e., L+l
of (2.13), when k+l=12).

This procedure will ensure stability (and hence also
efficient smoothing; see Sec. 4.2) together with the higher-
order accurécy of central differencing. Note that such a
multi-level process will not converge to zero residuals, since
it uses two conflicting difference schemes. The very point
is, indeed, that the solution produced is a better approxi-
mation to the differential solution than can be produced by
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either scheme.

Genérally, the global approximation order p of the
multi-level scheme will be determined by the order of the
difference operator used in the residuals transfer. This
operator need not be stable. It is only in relaxation that a
stable operator (i.e., with good hR-ellipticity measure)
should be employed, and this operator can be of lower approxi-

mation order.

Observe that the lower order operator can be used on the
coarser grids both for relaxation and for residuals transfers,
. . . . k+1

since those grids act only as correction grids. Thus L

in (2.10) should be of the higher order only for k+1 = & .

The t-extrapolation technique (Sec. 2.4) can, in fact,
be regarded as a special case of this procedure. There, the
higher-order operator of the residuals transfer is in effect
constructed as a combination of lower-order operators on two
levels, which is simpler to program.

4, LOCAL MODE ANALYSIS OF MULTI-LEVEL PROCESSES
An important feature of multi~grid.solvers is that their

computational work can fully be predicted by local mode
(Fourier) aralysis. This is an analysis applied to general
nonlinear problems in the following way: The difference
equations are linearized around some approximate solution, and
the coefficients of the linearized equations are frozen at
local values. (Or, more generally, the coefficients may assume
some typical mode cof oscillation. See Sec. 4.7.1.) The
resulting constant-coefficient (or single-mode-ccoefficients)
prcblem is then assumed to hold in a grid covering the entire
space, and its convergence properties under various prccesses
can be studied in terms of the Fourier components of the
error. This local analysis is a very good approximation to
the true behavior of modes with short wavelengths, which
interact at short disiances end are therefore rot influenced
by distant boundaries and slow changes of coefficients. It
is inaccurate for long modes, but those may be ignored in the
multi-grid work estimates, sinde long-modes convergence is
obtained on coarser grids, where the computational work is

negligible.
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Indeed,.the predictions of this analysis turns out to e
very preéisé, so much so that they can be used in developing
the programs (see Sec. 6.5 for example). As long as the
cycling algbrithm (see Sec. 2.6 ) does not attain the conver-
gence factor ﬁ (see Secs. 4.4 and 4.6), it must contain a
programming bug or a conceptual error. Such errors are very
common with inexperienced multi-gridders, especially in their
treatment of boundary conditions, hence it is re¢ommended that
codes be gradually developed, starting from simplest cases and
insisting at cach stage on attaining the theoretical conver-

gence factor.

The local mode analysis should of course be supplemented
by some other considerations. These are discussed in Sec.4.3.

4.1 Smoothing factors

The simplest (and most useful) application of the local
mode analysis is to-compute the error-smoothing power of a
given relaxation scheme. We assume that the relaxation is
consistently ordered. This means that its sweeps consist of
passes in each of which the order of two points x and Y
(whether x 1is relaxed before, after or simultaneously with
y) depends only on x-y .

There are many types of relaxation, especially for non-
scalar systems. The simplest one can be called strongly
potintwise Gauss-Seidel relaration. 1In it, to each finite
difference equation there corresponds one and only one dis-
crete unknown. The relaxation scan the equations by some
order. Each equation in its turn is satisfied by changing the
value of the corresponding unknown. This relaxation is always
convergent if and only if the discrete system of equations is
positive definite (upon assigning a proper sign to each
equation). Hence this type of relaxation is natural for V-
elliptic systems, or for strongly elliptic systems (with
sufficiently small mesh-sizes, in case non-principal terms

are present).

For elliptic systems which are not strongly elliptic
there is no natural one-td-one correspondence between
equations and unknowns. (This is already true in the

differential system. See Sec. 5.3, for example.) More natural
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then is what we call pointwise Collective Gauss-Seidel (CGS)
relaxation. For this type of relaxation it is assumed that
the grid is not staggered. The g unknown functions and the g

_differential equations are all defined on the same grid-points

so that at each point q unknowns and q difference equations
are centered. The relaxation sweep consists of scanning these
grid points in some order. At each point in its turn the
system of g difference equations is satisfied by simul-
taneously changing the g unknowns. A slightly more general
method of relaxatior, called pointwise Collective Successive
Over-Relaxation (CSOR), is to change at each point the g
unknowns by changes egual to the CGS changes multiplied by
some "relaxation parameter" w . (More generally, w may be
a gxq matrix.) Denoting by u and § the approximate
solution before and after such a relaxation sweep, res-
pectively, we get the relation

_ B, u(x+vh) + ] _ B u(x+vh) +
veEN~ ¥ vEN' ¥

+59H1-bBQ)+%§qn

= fhx) ' (4.1)

where B is the gxg matrix ban (see (3.10)), Nt is

the set of neighborhood indices v such that (x+vh) is
scanned before the point x and hence new value u are
already used at those points, and N~ is the complementary
set of indices such that (§+yh)' is scanned after x

= gh-§ the error before and

1<

Denoting by v = gh-—g and
after the sweep, respectively, we get from (4.1) and (3.10)

I _ B, v(x+vh) + [ , B, vix+yh) +
vEN~ ¥ ven® ¥

€|

+Bgu1-§yq)+ x)] = 0. (4.2)

In the local mode analysis we assume Vv to be defined in the
entire space, and hence it can be expanded in che discrete

Fourier expansion

vix) = [ ¥(8) exp(i &-x/hi.ix - (4.3)
Similarly _
Vix) = [ ¥(8) exp(i 9-x/h) dx . (4.4)
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It is also assumed in this analysis that 3, are independent
of x and hence, upon substituting (4.3) and (4.4) in (4.2),

1 1 _

B_+By(l-=) + [B +=BylR=10 |, (4.5)
wherc R = R(8) 1is the relarxation amplification matriz, i.e.,
v(8) = R(g) v(6) , and

a. (5.

B- = Z - B el-e- \—) , B+ = E . B\) el— }—) .

vEN ¥ VENT -

The relazation amplification factor u(8) 1s the eigenvalueof
R(g) with the largest magnitude. The smoothing factor
is defined as the worst (largest) magnitude of amplification

factors of high-frequency components:

W= max |u(8)]| . (4.6)

<|8lgm

e

The smoothing rate is log(l/u) .

In other types of relaxation, calculating the smoothing
factors may be more complicated, since in addition to u and
u there may ke several intermediate values of the approxi-
mate solution (see for example Secs. 5.3 and 6.3 below). There
will then be several equations like (4.5), instead of just
one, from which' R should be eliminated, or the amplification
factor u(g9) should be computed for any desired 9 . A
general computer routine, called SMORATE, has been developed
for this purpose. The user inputs the details of the
relaxation scheme, and the routine outputs the smoothing fac-
tor § , a map of the amplification factors |u(6)| , as
well as various other related information, including certain
estimates of the convergence factors (see Secs. 4.4 and 4.5).

4.2 Construction of Relaxation Schemes

With the SMORATE routine we can evaluate and optimize
relaxation schemes over some range of possibilities. On the
other hand, it does not provide us with a general method of
econsgtructing good schemes. For non-scalar problems the con-
struction is not trivial at all. Although CSOR usually pro-
:vides smoothing factors bounded away from 1 (i.e., u <1
and u does not tend to 1 as h > 0 ), more “"natural"

schemes may provide much better factors (see Secs. 5.3, 6.3,
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7.3. Note there that for such schemes it may be ecasier to
calculate p in terms of the residual function LhV rather
than in terms of the error function V. Both of course yield
the same amplification matrix R).

The construction of good relaxation schemes, like the
construction of good finite difference equations, depends on
some physical intuition and expertise that can be derived
from considering the simplest cases. See Sec. 3.2 in [B2],
Ssec. 3.3 in [B3], Sec. 6 in [BS5], and Secs. 5.3, 6.3 and 7.3
below. Here we emphasize some general considerations,

relating smoothing to the h-ellipticity measures.

A nceessary condition that pointwise relarxation scnemes
for the difference system LR can be devised with good
smoothing factors is that Lh has a good hT-ellipticity
measure E?(ﬁh) . Indeed, if for some mode § the value of

|£h(h,§)| is small (compared to its values for other modes),
then the error V(x) = A exp(i 8-x/h) has small residuals
(compared with the residuals of other errors with the same
amplitude A ), and can therefore have only small (compared
with A ) corrections, no matter what relaxation scheme 1is
used (as long as it is a pointwise scheme, where the correc-
tion is determined only by the local residuals). This 1is in
fact the reason why relaxation is not efficient for small

6 (smooth error components), where ih(h,g) = 0(1) , com-

h _ o(h™™) for some high-frequencies. Small

pared with L
hT-~ellipticity measure means that |ih(h,9)l is small for
some high-frequency 8 , hence the error mode ¢ is little
affected by any pointwise relaxation, hence |u(g)| 1is close

to 1, hence p 4is close to 1 .

The above necessary condition may also be sufficient (in
the context of constant-coefficient equations discussed here).
As an indication, consider the CSOR scheme mentioned above.
Writing up(8) = l1-u(8)w , it follows from (4.5) that

det{B-pu By-nuwB,} =0, _ (4.7)

where B = B_+B_+By 1is the characteristic matrix Rh(é)
(cf. Sec. 3.2). Hence u = l—xw-+0(w2) , where X is a
root of the equation
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det{B-ABy} =0 . (4.8)"

Thus, for sufficiently small w , |u] is smaller than 1
(and bounded away from 1 as h =+ 0) iff Re X > 0 (ard

Re X is bounded from 0) . for all roots A of (4.8). 1In the
scalar case this means that, for sufficiently small w and
all sufficiently small h , lu(g)l is bounded away from 1,
for all |8| bounded away from 0, if and only if i
R-elliptic (cf. [B2]). For any fizxed h, 1§ < 1 for suffi-
ciently small w if and only if Eg(Lh) > C ; and, moreover,

large values of Eg(Lh) imply large values of A , where

D= 1-3%w+0(wd)

In case the h-ellipticity measure E?(Lh) is small, so
that no pointwise relaxation would have good smoothing rates,
one can still use block relaxation, such as line relaxation,
or (if d > 3) plane relaxation, etc. Generally, if ¢ is
some subspace, then a ¢-relaxation is any relaxation where,
simultaneously with x , we relax all the points y such
that y-x € ¢ . For example, ¢-CGS 1is a relaxation where
all the g equations at all the points y such that
y-x € ¢ are satisfied simultaneously by changing all the
unknowns corresponding to these points. &-CSOR is similar,
with changes which are the ¢-CGS changes multiplied by the

relaxation parameter w . For this type of relaxation it is
not necessary to have good E?(Lh) , but it is necessary to
have good semi~-h-ellipticity measure E?(Lh,é) (see (3.48)).

Block relaxation will thus be used for degenerate ellip-
tic difference operators like (3.46). For (3.47) we can use
pointwise relaxation, despite the degeneracy of the differen-
tial operator. Generally, the degeneracy that require block
relaxation is such that the system of difference equations
can be decomposed into blocks of equations with only weak
" inter-block couplings. These are the blocks that should be
taken simultaneocusly in the block relaxaticn. For example,
in (3.46) the blocks are the unknowns corresponding to the
hyperplanes {xl = const.} , which become decoupled os €~ 0.
Hence pointwise relaxation would not smooth the error: High-
frequency functions of kl will not be affected by relaxation.
They will, however, be efficiently reduced by the hyperplane
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relaxation. Another example of such degeneracy occurs in
{upstream) approximations to (3.9b), when some of the aj are
much smaller than others. A similar situation arises in
Navier Stokes equations with large Reynolds number when the
velocity direction approximately coincides with a grid-line or

a grid plane.

Another alternative in treating such degeneracies is to
still use pointwise relaxation but to employ as the multi-grid
coarser level a grid which is coarser only in the directions
of smoothing, 1i.e., cnly inside the blocks (only in the

XoreserXy directions, in the above example).

A similar approach (a multi-grid remedy for certain
inefficiencies in relaxation) can also be taken in solving
quasi-elliptic equations (Sec. 3.4). Relaxation there is
inefficient for the unstable error components (|8| = m with
small Lh(Q) ). These components are suitably averaged out
by (3.22). So the multi~grid remedy for the inefticient
smoothing'is to use (3.22) in transferring the residuals to
the coarse grid. As a result, the multi~grid process will
have fast convergence for the averaged solution, which is the

only meaningful solution.

4.3 Supplementary considerations

Some discrepancies between real computations and the
local mode analysis should be taken into‘accouné., Most impor-
tant is to realize that the error smoothing process in
relaxation does not continue indefinitely. Except for some
ideal cases, a certain level of high-frequency errors is
always coupled to the smooth errors. Starting from a com-
pletely smooth error function, a certain level of high-
frequency error modes is generated by the relaxation sweeps
because of interaction with boundaries and variations in the
coefficients of the finite~difference equations. This level
of coupled nonsmoothness will persist as relaxation slows
down. Further relaxation sweeps will be wasteful. Moreover,
if the efror is smoother than this level, relaxation may even
magnify the high-frequency error:, :nstead of reducing them,
and it is best to avoid relaxing altogether (cf. analysis in
Sec. A.2 of ([B3]).
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The practical rule, at any rate, is always the same.
Continue relaxation as long as it exhibits fast convergence
rate. When it slows down, switch to coarse grids -- the error
is always sufficiently smooti. for that purpose. In case of
highly-oscillatory coefficients, the residual function is not
smooth, however, and should be transferred to the coarse grid
by full weighting.

Another consideration to supplement the loéal mode analy-

"sis is the relaxation of boundary conditions. These should
not bLe scrambled together with the interior equations --

their smoothing is a separate process, and there is no way of
transferring to coarser level the residual of an equation
which is a combination of interior and boundary difference
equations. Also, care should be taken that the boundary
relaxation does not disturb too much the interior smoothness.
For example, if a second-order partial differential equation
with Neumann boundary conditions is given, with some smooth
initial error, and if we change the solution near boundaries
s0 as to satisfy the Neumann conditions, then we intreduce
interior residuals near the boundary which are much larger
than (in fact, O(h~l) times) the other interior residuals.
Generally, imposing non-Dirichlet boundary conditions will
similarly sericusly impair the interior smoothness. The
effect of this will not be serious if full residual weighting
(i.e., residual transfer to the coarse grids such as (3.22)
which assigns the proper total weight to the residual at each
fine-grid point) is used near the boundary. Better still,
this trouble can be completely avoided if we note that we need
not impose the boundary condition in relaxation. All we need
is to smooth its error, with a smoothing factor as good as the
interior smoothing factor. In the ‘above example, this is
obtained if, at each boundary point in its turn, instead of
satisfying the boundary condition there, we change its error
to become the average of the errors at adjacent boundary
points. 1In case of a smooth error function, tlis procedure
would introduce only vO(h) (instead of the above O(h—l) )

relative disturbance to the interior reéidual function.
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4.4 Multi-grid convergence factors: One level analysis

The main purpose of the local mcde analysis is to predic%
the convergence rate of multi-grid cycling algorithms (Sec.
2.6). The simplest prediction, the one-level analysis, is in
terms of the smoothing factor I . We assume that the relaxa-
tion sweeps over level k affect error components exp(i Z-x)
only in the range w/h,_, < |Z| < n/h,  (see Sec. 6.2 in [B3]).
One such sweep reduces such a component by u(Ehk) . Hence,
if the multi-grid cycle includes s sweeps over each level,
all the error components will be reduced at worst by W5, we
assume of course that s 1is not too large (see Sec. 4.3) and
that the interpolation and residual transfers are of the

proper orders (see Appendix A in ([B3]).

-]
Let us denote by u the convergence factor per relaxa-

tion work unit, where the work unit is the work of one sweep
over the finest level M (so that a sweep on level Kk costs
Zd(k-M) work units), and where all othef work (such as the

work of interpolations and transfers) is ignored. The above

cycle with s sweeps on each level costs roughly
-2d d,-1

s(l+2_d + 2 + ...) mos(1-2"T) such work units. Hence
the one-level analysis estimate is
-d
° Ll -
bom pt=2 ) (4.9)

This estimate is somewhat crude, but it is easy to obtain
(e.g., using SMORATE — see Sec. 4.2) and it turns out in prac-
tice to be at most 20% off the accurate two-level estimate.

4.5 Mean square convergence factors

Estimate (4.9) is sometimes too pessimistic. It predicts
the convergence of the worst component, as implied by (4.6).
Sometimes, except for a very small range of 8 , the values
|u(g)| are all considerably smaller than u , and hence the
worst convergence rate (4.9) will usually become dominant
:only after many cycles. The actual decrease of the error in
a small number of cycles depends then on the r:2lative magni-
tude of the various components in the initial error. Denoting
by V(8) the amplitude of the 8 component in the initial
error, its amplitude after several cycles is u(g)s G(Q) ,

(r/2 ¢ |8] s m) , where s 1is the total number of sweeps on
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the finest level made during these cycles. Hence the L
norm of the high-frequency errors is reduced by the factor

u_ = (4.10)

{[|G<g) 1(8)%|2an }§
s ’

[V () as

where the integrations are over % < |8] ¢ ™ . Hence, the
convergence factor per relaxation-work-unit is given by
° s7l(1-279

ng m lig) , (4.11)

where we assume that the additional work on coarser grids (to
obtain convergence similar to (4.10) also in the low frequen-
cies) is still about (2d-1)-l times the work on the finest
grid. It is easy to see that asymptotically, as s + = ,

estimate (4.11) indeed tends to (4.9).

An example of a relaxation scheme for which most Iu(O)I
are much smaller than . is given by the pointwise Gauss-

Seidel relaxation of (3.46), where u = |u(n/2,0,...,0)| ~
1-2¢/(d~1) . Numerical experiments are reported in [Pl] in
which the initial error was random, so that G(Q) = 1 could
be assumed in (4.10). The prediction (4.11), for +arious
values of s , turned out to be very precise.

The computer routine SMORATE (see Sec. 2) calculates both

estimate (4.11) and the asymptotic estimate (4.9). Its user
can input the initial distribution ¥(8).. Otherwise
G(g) = 1 1is assumed, corresponding to random initial errors.

4.6 Multi-grid convergence factors: Two~level analysis

The one-level analysis is not always accurate enough for
debugging purposes (comparisons with numerical experiments).
More importantly, it yields no information concerning the
inter-level operations (interpolations( residual transfers),
and hence no tool for optimizing them. The two-level analysis
presented below takes into account all the operations between
the finest level M and the next coarser level M-1 , and
makes some approximating assumptions concerning the still
coarser levels (M-2, M-3, etc.).

The Fourier mode exp(ig- x/hM) of level-M errors

appears on level M-1 as the mode exp(i28-x/h ) , since

M-1
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hM-l = ZhM . Hence, on level M-1 it coincides with every
mode eXP(iG'-xl/hM) such that 6' = § (mode ) . Thus, the
inter-level analysis introduces coupling between each lower
mode 6 (0 g |8] ¢ %) and its (29-1) high-frequency

harmonics {8' : % < |8' ¢m, 8" =6(mod m)} . In parti-

cular, the corrections interpolation IM is represented by

M-1

the gxg matrices iﬁ_l(g') defined by
~ 10 . A~ ~ -NL
Iy | Vet Eh o v erTEFR (412
6'=0 (modm) °
where V is any g-vector and 0 < le] ¢« m/2 . Eﬂ_l(g') is
called the symbol of Iﬁrl . Usually iﬁ-l is diagonal, i.e.,
any two correction functions vs-l and vg"l are inter-

polated independently of each other. In higher-order finite
element formulations, however, one discrete function may rep-
resent a derivative of ancther, and the interpolation of each
will then involve the other. Most often used is the universal
I-order multi-polynomial interpolation, for which

d

M-l(gl)a,B = 5&8 jzl wI(cos ej) , (4.13)

IM
where ©,(£) = (1+£)/2 , ©,(£) = (8+3£+5£°) /16 , etc. For
staggered grids wI(g) depends on the relative positions of
the coarse and the fine grids, which may depend on «a

The residual transfers Iﬁ-l are similarly represented
by a symbol iﬁ‘l(g') , Wwhere ‘
- ~ 16" . 2 AMe ~ 1 6
N I IS L (4.14)

For non-staggered grids the right-hand side of (4.13) can des-
cribe these matrices, too, including also the case oo(x)s 1,

which is called "injection".

We consider a multi-grid cycle which includes s relaxa-
tion sweeps on level M , transferring then the residuals .to

level M-1 , solving this residual problem on level M-1 and

interpolating its solution as a correction to level M . (A
more reaiistic cycle is discussed in Sec. 4.7.2 .) 1In terms
of the relaxation amplification matrix R(3) " (see Sec. 4.2),
the characteristic matrices ZM = lh and QM-l = RZh (see

Sec. 3.2), and the interpolation symbols introduced above, the
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qu x 2°q amplification matrix of the cycle can be written as

_ v v
wo1 (0 2202607 Mgy M@ R(5) S (4.15)

This matrix transforms the (2dq)-vector of error amplitudes

v A A d T
vie) = (Beh, .. ve? )y,
1 zd . AT .
where 687,...,8 are the harmonics of §, and .V(8°) 1is

14

the g-vector amplitude of the 93 error mode. The matrices
on the right-hand side of (4.15) are block matrices defined
by

dimension
ﬁ(g) = diag{R(sl) ,...,R(de)} 299 qu
Pey = diag{Qh(Ql),...,zh(gzd)} | 29g x 2%
Pl o G, @b ..., PTe2) a x 2%
Mo = I e L ?ﬁ_l(gzd))T 299 x g

v .
and I is the qu x qu identity matrix. The two-level
amplification factor A(6) 1is the largest (in magnitude)

eigenvalue of C(9) . The two-level convergence factor is

X = sup [x(8)] . (4.16)
0<|6]gn/2
For various cases A was calculated by suitable computer
routines. A general routine for this purpose (similar to
SMORATE) is not yet available.

o
To estimate u , the convergence factor per relaxation-

work-unit, we assume again that the.same number of relaxation
'sweeps is made on all levels (cf. Sec. 4.7.2) and hence

—e~l(y.5-4d
; &S (1-2"7) (4.17a)

Here, only the work of relaxation is counted. When residuals
are transferred to the coarse grid not by injection, this
transfer roughly costs another work-unit, and a more accurate

estimate then is

-d

li1-279..

5 (s+1) (4.17b)

o
u

Numerical values for A and f are included in Sec. 4.8.
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4,7 Multi-grid factors: Additional remarks

4,7.1. Oscillatory coefficients. To study the influence of

non-constant ccefficients, we can consider the extreme case of
"adding high-frequency oscillations. Instead of constant b
(cf. (3.10)), we can take

agy

d
2 .
= i g3-
an(x ) jzl baB\-)j exp(i 87°x/h) , _ (4.18)
where QJ are the harmonics of 8 (cf. Sec. 4.6). The

theory for this case will go through as in Sec. 4.6, except

v v
that R(8) and Zh(g) will no longer be block-diagonal, but
2h

full matrices. The coarse grid symbol 2 remains the same,
since the coarse grid operator is assumed to have constant
coefficients. (Indeed, when the fine-grid coefficients (4.18)

are transferred to the coarse grid, either by injection or by
averaging, one gets a constant-coefficient coarse-grid
operator. Incicdentally, numerical experiments [01]1 have
shown that, averaging is much preferable to injection in case
the high-frequency harmonics in (4.18) have large amplitudes.)

4.7.2. Perturbations. The cycle described in Sec. 4.6 is not
fully realistic. In the real cycle the residual problem on
level M-1 1is not completely solved, it is only solved to a
relative tolerance § (see Step F in Sec. 2.2). We can get a
good idea about the difference between the ideal cycle and

the real one by replacing C{8) with

_ oYM 2h 5y -1YM-1 o\ ¥h Voo.s
cn(g) = [I IM_l(Q)(l+n)2 (28) "Iy (812 (9)]IR(S)
(4.19)
and replacing A by
Xd = max lx )l . (4.20)
|n|s<é 0<|el<1/2
where An(g) is the largest eigenvalue of Cn(i) . Varicus

values of § could be used, but for consistency with the
above work assumption (i.e., that the cycle contains the same
number of sweeps on all levels) one should take § = Xé'
This equation may require iterative solution, but two iter-
ations are actually enough, namely, we can use the estimate

X =2 We can also optimize 6 and s by minimizing

X
0
T s1/w , where w is defined by 7: = §Stw/4 s+l+w/4

(or & ).
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4.7.3. Rigorous upper bounds for multi-grid convergence ra*t~s -

in the Lé norm (for constant-coefficients problems in the
infinite space) can be derived by slight charzes in the above
estimates. See an example in Appendix C of [B3]. Such
rigorous bounds are not too unrealistic: the rigorous bound
for log ; is typically 3 times the real asymptotic value.

4.7.4. Realistic asymptotic convergence factors are given by

(4.16) and (4.20). The difference between them is only a few
percent. The asymptotic convergence exhibited by cycling
algorithms [D2] deviates from (4.16) less than (4.20) does.
The shape of the domain (and its being finite) proves experi-
mentally ((S1],(01]) to have no effect on the asymptotic (i.e.,
the worst) convergence factor, except when level M is very
coarse. This validates a basic assumption of the local mode

analysis.

In case of a nonlinear or variable-coefficient problem,
the real convergence factor should be no worse than the
various factors obtained by local mode analyses at all points
of the domain, and the analysis of Sec. 4.7.1. There is not
enough experimental results to generally confirm this, but in

various cases ([sSl], (D2}) it proved true.

4.7.5. Precise comparisons. Por debugging purposes (see

Sec. 2.6), a precise agreerent is desired between the theo-
retical and experimental asymptotic convergence rates. The

o
comparison then should not be made between values of u , such

as (4.17), since those values already involve some imprecise
assumption about the work on coarser grids. (The theoretical
S is used for theoretical optimizations.) Instead, the theo-
retical values (4.16) and (4.20) should be compared with the
experimental values of X . The comparison can be made even
more precise by comparing (4.16) with an experimental X ob-
tained by a slightly modified algorithm, in which much

smaller & is employed, at least for level M-l . To obtain
the asymptotic (i.e., the worst'poggﬁble) experimental rate X
without spending too many cycles, it is helpful to start with
initial errors devised to contain a large amplitude of a worst

component (a component § for which the sup in (4.16) is
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attained or approached). Another alternative is to compute
and compare’ two-level mean-square convergence factors, simi-

lar to the one-level mean-square factors of Sec. 4.5.

4.7.6. Sirplified multi-~rid analysis, which separately treat

the relaxation process and the coarse-~grid-correction process,
is described in Appendix A of [B3]. It is less precise than
the above two-level analysis, but it is good enough for
algorithmic optimizations, and gives a clear idea of the
interpolation orders that should be used, and other parameters.
In fact, general rules for the inter-level operations emerge
from order-of-magnitude considerations, and all that is left
to be decided in every particular problem is the relaxation
scheme. This decision can be based on the smoothing-rate

analysis (Secs. 4.1, 4.2, 4.3) alone.

4.8 Numerical tables

Smoothing factors and the corresponding one-level con-
vergence-rate predictions are given as Table 1 in ([B3]. One-
level méan—square convergence factors for degenerate operators
are given in [Pl] where they are compared with numerical experi-
ments. Two-level convergence factors for Stokes equations are
given in Sec. 6.5 below. The following table is part of more

extensive tables to appear in [D2].

TABLE 4.1

Two~level convergence prediction for the 5-point Poisson egqua-
tion with Gauss-Seidel relaxation.

Residuals Injecticn Residual Welghtings
s
(I=0) (I=2)
5 sweeps - -y :
per = -7 - s - °_7 -75/(s+l)
cycle As u=ls As  [umdy
0 1 .4472 .5469 .4000 .7092
2 .2000 .5469 .1923 .6622
3 .0894 .5469 .1183 .6701
4 .0416 .5509 .0833 .6888
5 .0278 .5843 .0640 .7092
.1 2 .2314 - .5776 .1821 .6532
3 .0996 .5¢618 .1047 .6550
4 .0981 .6471 : .0955 .7031
.2 2 .2619 .6050 .1952 .6647
3 .1971 .6663 .1924 .7342
4 .1962 .7369 .1934 .7816
.3 3 .2957 .7374 .2926 .7942
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5. CAUCHY-RIEMANN EQUATIONS

5.1 The differential problem

As a first simple example of an elliptic system we have

studied the equations

Ux+vy = F, : (5.1la)
Uy-—Vx = Fz . (5.1b)
in a domain @ , where U = U(x,y) and V = V(x,y} are the

unknown functions, the subscripts denote partial derivatives,
and F; = F;(x,y) are given functions. All functions are
real. The homogeneous system F, 2 F, = 0 are the usual
Cauchy-Riemann equations, which express ar:lyticity of the

complex function U+iV

The matrix-operator form of (5.1) is

s(v) = (L) (W) = (&) (5.2)
v By -ax \Y Fz,

where 9, and ay are partial derivatives with respect to
x and y , respectively. The determinant of L 1is the
Laplace operator =4 = -a§¥-a§ . Hence (5.2) or (5.1) is a

second-order elliptic system, and its solution is determined
by one condition along the boundary 98 . As such a boundary

condition we can, for example, require
(U(x),V(x)), = G(x) ,* (x € 3Q) , {5.3)
where (U,V)n denotes the component of the vector (U,V)

normal to the boundary in the outward direction. From (5.1la),
(5.3) and the divergence theorem we get the "compatibility

condition"
[ Fydxdy = [ Gds . , (5.4)
Q N ‘ ’
If (5.4) holds then equations (5.1) or (5.2), with the

boundary condition (5.3) is a well-posed problem: A unique
solution exists and depends continuously on the data Fyo

F: , and G.
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5.2 . Discrete Cauchy-Riemann equations

Suppose we first try to approximate (5.1) by the central

difference equations

h h h h
U (x+h,y)-U " (x=h,y V (x,y+h)-v"(x,y-h}) _ _h
h l‘+ 5H Fl(x,y) (5.5a)
0" e, y#h) U e, y=h) V(e y) VR b y) L b (5. 5b)
2h 2h 2t '
The corresponding difference operator is
h.h h_ h
T H.3
XX y'y
o= (5.6)
h.h h.h
Myly MO
so that :
h _ h:h,2 _ h.h,2
det L = - (uxéx) (uyéy) ’ (5.7)
with the symbol (see Sec. 3.2)
Ah s 2 . 2
L (91,62) = sin 81-+51n 6, - (5.8)
. . e . Ah _ An _
This operator is not elliptic, since L (w,0) = L (0,7) =
= ah(n,n) =0
Indeed, the homogeneous (5.5) equations (F? = Fg z 0)
have the oscillatory solutions
" (ah,8h) = c (-1% + ¢y (-1 4 cj(-1) 8
(5.9)
vPan,gh) = ¢, (-1)% + g (-1 + ¢ (-1)**F

which do not approximate any solution of the corresponding

differential equation. Note, however, that solutions like

Wb = b

(5.9) vanish irn the average, i.e., MV =0 for a

suitable local averaging operator M. For example, suitable
averaging operators are Mh = uhuh or MP = (uhuh)2 . (In
Y non X"y

the first case the grid-lines of Mu are half-way between
grid lines of uh ). Generally, the solutions of (5.5) will
be good solutions in the average. Such difference operators
we call quasi elliptie. See Sec. 3.4.
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Let us now construct an elliptic difference approximation

Lh to (5.1). If the equations are to have the form
1 h, 2h __h
DxU +-Dyv = Fl (5.10a)
3.h 4_h h
- = 5.
DyU Y F, (5.10b)

where Di and D; are some difference approximations: to ax

h . -D)I(Di--DZD3 should be an elliptic

and ay , then det L vPy
approximation to the Laplace operator -4 . The simplest such

operator is the five-point operator which is obtained by taking

either .
1 _ 4 _ _h - 2 _ .3 _ .h .
Dy = Dy = 8 + D, =Dy =23, . (5.11)
or -
1 _ 2,_.F 2 _ . 3,_.F
Dx = Dx -Bx ’ Dy = Dy ..ay ’ (5.12)

or aB replacing one or both of the 3F . Here BB*=3F ,BF*=BB.
Approximations of the form (5.12) could give central approxi-
mations to -4 , but (5.10) with (5.12) is not a central
approximation to (5.1), and its truncation error is therefore
O0(h) . Thus we prefer to use (5.11). This we can do only by
using staggered grids for Uh ana V@ .

The grid we use and the positioning of the discrete
variables are shown in Figure 5.1. With this positioning we
can indeed approximate (5.1) by

BhUh-+3th = FP , at cell centers <:> (5.13a)
X Yy 1
h . .
ayuh-agvh = Fg , at interior vertices <:> , (5.13b)
and the symbol is that of the 5-point Laplacian
h_ _.h _.h
A" = axx ayy , hamely
8 8
A _ 2 1 .2 72
Lh(el’ez) = 4 sin 5 + 4 sin - -
This symbol vanishes only for el =08, 2 0O(mod 2m) . Thus

(5.13) is an elliptic (even R-elliptic) difference system.

For simplicity we consider here only domains with boun-
dary along grid lines. It is then simple to discretize the
boundary condition (5.3). On each boundary link (the heavy

lines in Figure 5.1) the variable (u,v),1 is already defined
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FIGURE 5.1 Discretization of Cauchy-Riemann Eguations.

O 0,
A typical part of the grid is shown. The discrete unknown

v ’ Vv
functions U™ ana VP and their computed approximations u

and vh (u and v in the figure) are defined at the centers

h

of vertical and horizontal links, respectively. The first
equation (5.13a) is centered at cell centers, where its right-
hand side, FT 1s defined and where is shown in the
figure. The second equation (5.13b) is centered, and Fg is
defined, at the grid vertices, as shown by <:> in the

figure.

at the center of the link, so (5.3) is discretized to

h at midpoints of boundary links. (5.19)

(Uh,Vh)n = G
Summing (5.13a) over all the cells of our domain we get the
compatibility condition

F?(x,y) = ) ¢"x,y)  (5.16)

cell centers boundary midpoints
which is the discrete analog of (5.4).

Theorem. If (5.16) holds, then the discrete Cauchy-Riemann
equations (5.13) with the boundary conditions (5.15) have a

unique solution.

Indeed, the total number of equations (5.13), (5.15)
equals the total number of cells and vertices in the grid.
The number of discrete unkrowns is the number of links. Hence,
by a well-known formula of’Euler, there is one more equation

than unknowns. But the equations are dependent, as we saw in

—64—



Hence, ‘if

constructing the compatibility condition (5.16).
(5.16) holds, we can remove an equation and have the same

number of equations as unknowns. It is therefore enough to

~prove the theorem for the homogeneous case F? =0, Fg =0
Gh £ 0 . In this case (5.13a) implies the existence of a
discrete "stream function" wh , defined at the vertices of

the grid, such that Uh = 33 wh , Vh = ~ai wh . The homo-

geneous (5.13b) Ahwh = 0 , and the homogeneous
(5.15) implies that wh along the boundary vertices is con-

vields

stant. Hence, by the maximum principle, wh is constant
h

everywhere. Thus, in the homogeneous case U = 0 and

Vh = 0 , which is what we had to show.

5.3 DGS relaxation and its smoothing rate

Most relaxation schemes are based on one-to-one corres-

‘pondence between equations and unknowns: The basic relaxa-
tion step is to satisfy (or over-satisfy, or under-satisfy)
one of the discrete equations by changing the corresponding
unknown f{(or satisfy a group of equations by changing the

corresponding group of unknowns). Such one-to-oné corres-
pondence is not always natural. In our case, it is clear

ons (5.1) that it would be

say, as the equation corres-

already in the differential
(s.1a),
ponding to the unknown U ,

equations
unnatural to regard
and (5.1b) as the one corres-

The entire In

ponding to V .
the differences equations it

a one-to-one correspondence

system corresponds to

(u,v) .

would be impossible to have even

between pairs of equations and

since the number of unknowns is one less
than the number of equations.

(5.12)
scheme introduced in Sec. 4.1, with any

pairs of unknowns,
(If the discrete equations

were used, it wculd be possible to employ the CSOR

)

0 < w < 1

We will therefore use "distributive relaxation", i.e.,

-a relaxation scheme that satisfies each discrete equation in
its turn by distributinc chances to severecl unknowns, in a

natural manner.

To

neither

derive a natural distributive scheme we note that
(5.13a) nor (5.13b) are elliptic equations by them-

selves. It is.their combination together which is elliptic.
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Hence, in relaxing (5.13a), for example, we should take

(5.13b) into account. The simplest way to do it is to rel;x
(5.13a) in such a way that equations (5.13b) are not "damaged",
i.e., in a way which preserves the residuals of (5.13b). we
do this by simultaneously changing four unknowns, in the
following way:

h

. . h
Let (u ,vh) be the current approximation to (U ,Vh

)
Let (x,y) be the cell center where we next wish to relax
(5.13a), and let

h _ . h_.hh_.hh
ry = Fl-axu ayv (5.17)
be the "dynamic residual" at (x,y) . That is, r 1is the

residual at (x,y) Jjust before relaxing there. The relaxa-
tion step of (5.13a) at (x,y) 1is made up of the following

four changes:

uh(x-kg,y) - uh(x-+;,y)-+5
h,, h .. h, h
U (x=x,y) “u (x-=x,y) -8
2 z , (5.18)
vh(x.y+%) « vh(x,y+%) + 6
Vh(X'Y"%) « Vh(X:Y‘g‘) -8
where
6 = fh . (5.19)

It is easy to check that the distribution of changes (5.18) is
such that the residuals )

S Fg_‘—a;uhwivh (5.20)
at all neighboring vertices are not changed, whatever the
value of & . The choice of § (5.19) is made so that zjter
the changes the residual r?(x,y) will vanish. This is in
the manner of the Gauss-Seidel relaxation, where old values
are replaced by new values so as to satisfy one difference
equation. Such schemes may therefore be called Distridutive
Gauss Seidel (DGS) schemes. 1In case k of the four values
changed in (5.18) are boundary values (k=1 near boundaries,
except near corners), then no such change should be introduced
in those values, and (5.19) =s replaced by

h
§ = T——Ek hry . (5.21)
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The relaxation of (5.13b) is made in a similar manner.
If (x,y) 1is the vertex to be relaxed, the relaxation step

will include the changes

: 1
uqu+%)*uqu+%)+6

Py -5« Pixy - -

{5.22)
vh(x+%,y) - vh(x+%,y) -6
vhlx-%,y) + vh(x"g-,y) +5
where
§ = L pel . (5.23)

The distribution (5.22) is such that the residuéls r? will
be preserved, and § in (5.23) is such that equation (5.13Db)
at (x,y) will be satisfied by the changed variables.

The above relaxation steps can be taken in various
orders. In our programs, each complete relaxation sweep com-
prised of two passes: The first pass relaxes equation (5.13a)
by (5.18-19), letting (x,y) pass over all cell centers in,
say, lexicographic order. The second pass scans all the grid
vertices, relaxing (5.13b) by (5.22-23).

Remark. In terms of the discrete "stream function” wh (see
Section 5.2) the second pass of this relaxation reduces to
the familiar point-by-point Gauss-Seidel relaxation. The

first pass may be viewed as a similar relaxation for the dis-

crete "potential function" wh , defined by Uh = ah@h+fh '
b
vh = ahwh . ahch
¥ v 2 YL
The smoothing factor can most conveniently be calculated
in terms of the residual functions (rl,rz) . Por the Fourier
component exp(ielx/h~+i82y/h)', let A be the arplitude

of hr? before the first pass, A 1its amplitude after the
pass, A the amplitude of the dynamic hr? residuals, and
B the amplitude of § . It is clear from (5.19) that

B = 5/4 , and from (5.18)

-ie -i8,

A=A+Be + B e

A

[}
o0}
o
+
w
o
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Hence

-i8 -i8
B=a/(4-e T-e 2,
and the amplification factor of r? in the first pass is
i@ i6
= 1l 2 .
A e + e
=2 = ' . 5.24
M8) =3 =Te; 19, (5.24)
4-e -e

The residuals r? are not changed by the first pass. Simi-
are

[S=y

larly, in the second pass the Fourier components of r
amplified by A(8) , while r? remains unchanged. 1In a
complete sweep the amplitude of the vector (r?,rg) is
therefore amplified by the "amplificaticn matrix"

(A(e_a) 0 )
| (5.25)
0 A (8) .

Hence the smoothing factor is

b= max [A(®)] = .5 ‘ (5.26)
m .
]§|?§

Unsurprisingly, this smoothing factor is the same as in
Gauss-Seidel relaxation for the 5-point Laplacian. The con-
vergence rate of'relaxatiod is also essentially the same as
for Poisson problems, as was confirmed by numerical experi-

ments.

5.4. Multi-grid procedures

Assume now we have a sequence of grids (levels) with

mesh-sizes hl,...,hM , Wwhere hk+l = %hk . The relative
position of the different grids is shown in Figure 5.2.
h h h h h h h h )¢

Instead of Fl, F2, G, u’, v, u, v, ry and r£ used
above, the discrete functions on the k-th level will be deno-
ted by F?, Fg, Gk, Uk, Vk, uk, vk, r? and rg , respectively.
The multi-grid algorithm we use is the accomrnodative Cycle C
algofithm (see Section 2.6 above, or Section 4 in [B3]). For
relaxation we employ the DGS sweeps described in Section 5.3
above. ' _

The coarse-to-fine interpolation can be of first order,
since this is the highest order of derivatives in the Cauchy-
Riemann operator. An obvious way of doing such an inter-

polation (see Figure 5.2) is
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hiets u ® u ® u

v Uy v -9

°|® oV o|®

FIGURE 5.2 A coarse-grid cell divided into fine-grid cells.

Same notations as in Figure 5.1, with heavier-type being used
for the coarse-grid and lighter-type for the fine-grid.

uk(x,y-+ihk+l) or. u(x,y-—ihk+l) if x

is on a coarse-grid line

I uF e,y = (5.27)
SR aerny o)+ I W)
otherwise
.. k+1 _k .
and similarly for I v . One can of course use linear

interpolations instead.

The Cauchy-Riemann problem is linear. We can therefore
make coarse-grid corrections either by the Correction Scheme
or the Full-Approximation Scheme (FAS). In the latter case
we have to define the fine-to-coarse transfer of solution

(Ii+1 uk+l 'I§+l vk+l) . We use the following averaging (see
the coarse-grid and fine-grid positions ¢f u and v in
Figure 5.2)
Ii+l uk+l(x,y) - uk+1 uk+l(x,y)
, Y (5.28a)

kK+1 ,
k1) T U (x,y =30y )]

H

% [uk+l(x,y + th
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Ik vk+1(x,y) k+1 vk+l

= u_ (x,¥)

k+1 x (5.28b)
- 1, k+1 k+l,
H -2-[v (x+§hk+l,y)+v (?( :}hk*—l’y” .

The fine-to-coarse transfer of residuals Ii+lr§+l

(residuals of the first equation, at cell centers) is also
done by averaging:

§+1 r}£+1 - u1;+1 u};+1 r);+l . (5.29)

I
(See the coarse-grid and fine-grid positions of equaticns 1
in Figure 5.2.) When the Correction Scheme is used, (5.29)
serves as the right-hand side of equation (5.13a) on the coar-
ser level hk . In calculating (5.29) using (5.17), observe
that some terms are cancelled and some of the additions can be
made only once for two neighboring coarse-grid cells. It is
interesting to note that when FAS is used it is not necessary
to calculate (5.29). Transferring uk+l ang vk*t1 by (5.28)
and residuals by (5.29), it is easy to see that the FAS coarse-

grid equation will read

k ..k k .k _ k+1 k+1 _k+1 :
ax U -+3y u” = My uy Fl . (5.30)

Thus, the coarse-grid equation in this case is not affected at
all by the fine-grid solution. If we let P? = uk u§ F§+l

X
we find that (5.30) is actually identical with (5.13a) for the
k-th level. 1In other words, the relative truncation error in

(5.13a) vanishes.

Another nice feature of (5.30) is that if the compati-
bility condition (5.16) is satisfied on the fine grid, it will
automatically be satisfied in the coarse grid problem (upto

round-off errors, of course).
The residuals of (5.13b) can be transferred to the coarse’
grid by "injection" :

k+1 _k+1 Lo k+1 '
Ik r, (x,y) = 1, (x,vy) , ' (5.31)

since any coarse-grid center of that equation {any coarse-grid
vertex) coincides with a fine-grid center of the equation (a

fine~grid vertex).
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We have made experiments with the Cycle C algorithm only.
For FMG algorithms, a higher-order interpolation routine
should be added. This interpolation in the present case needs

to be at least quadratic (order 3).

5.5 Multi-grid results

Numerical experiménts with this algorithm are reported
in [Dl]. They show, unsurprisingly, exactly the same conver-
gence as in multi-grid solutions for Poisson problems; namely,
a convergence factor of about .55 per RWU (relaxation work
unit). Iideed, the entire procedure can be descrikzd as a
multi-grid process for two Poisson problem. (One Poisson
problem in terms of the stream function for the.case Fl 0,
the other in terms of the potential function for the case
F, 0.) Hence although experiments were conducted with
Cyzle C algorithm only, it can be safely predicted that the
Fixed FMG algorithm (Section 2.2) will solve the problem to
within the truncation errors (and even far below, when

T-extrapolation is employed), in 5.3 RWU.

The number of operations in such a CS algorithm, taking

into account the relaxation sweeps. and all the coarse-to-fine
and fine-to-~coarse transfers, is about 61ln , where n 1is the
number of unknowns in the finest grid. Almost all these
operations are either additions or shifts (i.e., multi-
plications by an integer power of 2); less than 3.5n of them
are real multiplications. In fact, these 3.5n multiplications
(needed in the gquadratic interpolations) can be replaced by

4n additions plus 2n shifts.

There is a faster way for solving the discrete Cauchy-

Riemann equations (5.13): Subtracting from Uh a functien

Ug which satisfies 32 UE z FT , Weé get a new system in
h _

1 0 . The problem can then be rewritten as a
Poisson problem for the discrete stream function wh . Solving

which F

that Poisson problem by a similar Full Multi-Grid algorithm,
together with the operations of subtracting Ug and con-

h and Vh
(additions and shifts ,only. Cf. [(B3]). The main purpose of

structing U would require about 23.5n operations

this chapter, however, was to study methods for solving ellip¥
tic systems. The techniques developed for the present simple

system are applicable to much more complicated ones.
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6. STEADY-STATE STOKES EQUATICNS

6.1 The differential problem
As a prelude to the treatment of the full Navier-Stokes

equations, we consider now the steady-state Stokes equations

in a d-dimensional domain

v-u =F, (6.1a)
-AU + YP = F , ’ {6.1b)
where U = (Ul,...,U_) represents the velocity of a fluid and
P represeats the pressure, ¥ = (al,...,ad) is the gradient
operator, 4 = ai + ... F 83 is the Laplace operator, and
Fo and F = (Fl,...,Fd) are given forcing functicns. (6.1)

are the equations of "creeping" flows (vanishing Reynolds
number). (6.la) is the "continuity equation" {(usually with
vanishing source term: Fg = 0 ), and (6.1lb) is the. vector of

d momentum equations.

The matrix-opefator form of (6.1) is

P

1

P 0 31 ‘e Bd

0
Uy 3, -A O U, Fy
L z . = (6.2)
Ya 0 O -8 \vg Fa
and the operator determinant is
det L = (-)¢ . (6.3)

Hence (6.1) is a 2d-order elliptic system and will require d
boundary conditions. These are usually given by specifying

the velocity on the boundary
U(x) = ¢(x) , (x € 3Q) , (6.4)
where G = (Gl,...,Gd) .

Equations (6.1) with the boundary conditions (6.4) con;
stitute a well-posed problem, provided the compatibility con-
dition

sszo dx = [ ¢-d (6.5)

R
is satisfied, where do is the boundary element multiplying

an outward normal unit vector.
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6.2 Finite-difference equations

By‘arghments similar to those in Section 5.2, we find it
best to discretize (6.1) on a staggered grid. Such a grid,
in the two-dimensional case, is shown in Fig. 6.1. In the
general d-dimensional case, the grid planes define cells, each
cell with 24 faces. The discrete velocity U? and its com~
puted approximations u? are defined at centers of j-faces,

i.e., faces perpendicular to the j~th coordinate. The discrete

] ® ® ®
[ » O » O ¢ O
[ o © o O v C'B
B ® ® @-
['5 o @ o O b C'B
2] {z] 2 >l

[ [1] i

FIGURE 6.1 Discretization of two-dimensiona. Stokes Eguations

A typical part of the grid is shown. The discrete pressure

ph is defined at cell centers (p). The discrete velocity

ulil is defined at centers of vertical links (@ = interior

centers; = boundary and exterior centers), and u? is

defined at centers of horizontal links (@ and ‘ ). The
discrete continuity equations are centered at cell centers
{(p) . The j-th momentum equation is centered at interior
values of u?.l (@). The exterior values of u? and ul;
(at - and , respectively, but not on the boundary)

are fictitious.
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pressure PP and its computed approximation ph are located

at cell centers. The discrete approximation to (6.1) can then
be written (with the notation of Sec. 3.2) as

d
) o1 o = P at cell centers (6.6a)
j=1 3 3 0
-Ahug + a?p = p? at centers of j-faces, (6.6Db)
(=1,...,4)

where the discrete approximation Ah to Laplace operator is

d
the usual (2d+1)-point approximation z (8}'.“)2 . PFor a point

X near a boundary, however, AhU?(g) lmay involve an exterior
value Ub(§e) . This value is defined by quadratic extrapo-

lation from U;}(y_). U?()_g) and U?()_cb) = G?(}_ﬁb) » Wwhere >_<b
is a boundary point on the segment (g,ge) .* This definition
is used to eliminate the exterior value from AhU?(§) ¢ SO

that the discrete Laplacian is modified and includes a

boundary- value of U?_.

The matrix operator of (6.6) is

0 SO 5
LP = arll " . O ' (6.7)
S O
hence det Lh = (-Ah)d and its symbol is
ihey = P = {? (2 sin %i)z}d , (6.8)
which is positive for 0 < |8| ¢ m . The difference system

(6.6) is therefore R-elliptic.

The boundary condition(6.4) is approximated by the way we

treat boundary and exterior values of Ub . For simplicity we

]

*
Note that different interior points may be adjacent

to the same exterior point §e . The extrapolated exterior

value depends on X and §b , hence slightly different

exterior values may correspond to the same exterior point.
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consider the case of domains whose boundary is ccntained in
grid lines (or grid planes). In this case the velocity normal-
to the boundary is conveniently defined at the center of
boundary faces, and the discrete analog to (6.5) 1s naturally

writtea as

I gt = el (6.9)
X y

where x runs over all cell centers, y runs over all cen-
ters of boundary faces, and Gg(y) is the (given) normal

velocity at Y

Theorem. The discrete Stokes equations (6.6), with exterticr
and boundary values determined by the boundary conditions ac
above, have a unigue solution if and only if (6.9) is satis-
fied.

The proof is simple. The number of equations is the same
as the number of unknowns, since for each interior U?(g)
there corresponds an equation (6.6b) at x , and for each
unknown Ph(g) there corresponds an equation (6.6a) at vy
The pressure values Ph are determined only uptd an additive
constant, but, on the other hand, the equations are dependent;
summing (6.6a) over all cell centers we-get (6.9). That is
to say, if (6.9) is not satisfied we get a contradiction. If
(6.9) is satisfied, we get a dependence of equations, corres-

ponding to the arbitrary constant in Ph . Hence, it is

enough to show that in the homogeneous case (gh 0 , gh =0,
the only solution is the trivial one (gh =0 , Iﬁlﬁconstant).

Indeed, if Eh = 0 it is easy to see from (6.6b) that

a
h,.h h_h h
= - U. . P .
0 jgl Iy (=805 (x) + 25" () ) UEY

h"? J,10d ) - o2

]
e~
=

3
h

-2 h h
h™* [31U5(x) uj(z)] uy(x)

+

I~ [
’—l

J

d
+ Z4Ph(§) B a?u (x) ,

i=1

e

where the point x in Zl runs over all interior positions

of U? (points (:) in Fig. 6.1); the pair {x,y} in I,
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runs over all pairs of neighboring interior positions of U?;

the pair {x,z} in Iy runs over all pairs of neighboring )
o h . . . . L .

positions Uj , with x being an interior position ( in

Fig. 6.1), and 2z being a boundary or exterior position
( in Fig. 6.1); and x in 24 runs over all cell centers

( p in Fig. 6.1). The term with £ vanishes by (6.6a),

4
since Fg 2 0 . 1In the Ly term, by the way exteriir galues
h
are defined, we get (for G = 0) U?(z) = 2Uj(§)- 3 Uj(z),
where y is the interior neighbor of x opposite z. Hence,

a - :
' b h, o\ q2 h, .2, +h, . 2 _1.h hooyl oo
g Ioluy(x) - Uy (y)) + I3405° + U 3uj<§)uj(z); 0
j=1

where Z; runs as ], except for terms added to I, This

R - h _
form is positive definite, hence U? = 0. By (6.6b) P = const.

6.3 Distributive relaxation

The j-th momentum eguation (6.6b) is elliptic in U? .
We will therefore smooth the residuals of that equation by
relaxing it in the following natural way: For a fixed j we
scan in some order all the interior points x where U? is
defined. At each such point x we change U?(g) so as to

satisfy the j-th momentum equat.on centered at Xx .

Having done éuch a sweep for each j =1,...,4 , we now
need to smooth the error in the continuity equation (6.6a).
The remaining variable left to be relaxed is Ph , which
seems indeed to correspond "geographically"” to the continuity
equation, i.e., Ph is defined where (6.6a) is centered. But
Ph does not even appear in (6.6a), so by itself it cannot be
used to relax that equation. Here we recall our lesson from
the Cauchy-Riemann equations (Section 5.3): Eguation (6.6a)
is not elliptic, it is only a part of an elliptic system. The
way to relax it is therefore by a distributive relaxation
designed so as to keep unchanged the residuals of the other

equations in the system. It is done as follows:

Let (ph,u?,...,ug) be the current approximation to
(Ph,U?,..;,Ug) . We scan the cell centers in some preassigned

order. Let x be the currer: cell center and let
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ry(x) = Fg(g) - 3? u?(g) (6.10)

[ aaelo?

j=1
be the "dynamic residual" at x ; i.e., the residual at x
just before relaxing there. The relaxation step at x is

made up of the following . 4d+l changes (see Fig. 6.2(a)):

uj(§-+§§j) - uj(§-+5§j) +48 (3 = l,...,é) ' (6.11la)
Wix-3h) « olx-3h.) -8, (j=1,...,4) , (6.11b)
s RS §HET 22
ph(§) « ph(g)-r%g 8 ’ (6.11c)
Px+h) - o™ (x + 1) -Fs, (3 =1,...,4) , (6.114)
PP (x-h) « pMx-hy) -26, (j=1,...,d4) , (6.1le)
J - =3 h
where
_ h .h
6= o ro(x) (6.12)

and where bj is h times the unit vector in the Xy
direction. Like (5.18-19) above, changes (6.lla,b), (6.12)
are such that, after changing, rg(g) vanishes. The pressure

changes (6.1lc,d,e) are such that the momentum-equations

residuals
h h h_h h h
. = F. + -3 ' .
rJ F] A uj oJP (6.13)

at all points remain unchanged.

Indeed, another way of writing the relaxation step at
the cell center x is through the characteristic function of

that cell, which we denote by xz ; that is, xz is a func-
tion defined at cell centers, with Xi‘(g) = 0 except for
xi(g) = 1 . Changes (6.11) can be written as
' h _ h h_h
. . = 6ha.y =1 !
Uy « uJ 3‘5 (3 L )
L h (6.14)

ph + ph-éhA Xy *

Substituting these changes into (6.13) we immediately get

h h_ o .h.,hh . . hhh
rj « Lj 51‘%u 3]-)(?-( + othL. X}_{.
h .
=r. , =1,...,d
ry (3 )

Near the boundary it is not possible to precisely pre-

serve: r?,...,rg while relaxing the continuity equation.
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FIGURE 6.2

Continuity-Equation Relaxation Step in

(a) The cell at the center of the figure is relaxed by

2-Dimensional Stokes Eqguations.

simuitaneous changes.

at the relaxed cell.

(b) Configuration of changes in a boundary cell.

5 =h rh(x)/3

(¢) Configuration of changes in a corner cell.
§ = h rf(x)/2
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(cf.

The amount of change is displayed
at 'the position of the changed variable.

Fig.6.1l.)
§ = h rg(g)/4 , Wwhere rg(g) -is the dynamic residual
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Neither is it necessary. It is enough to relax rg so that
the changes introduced to r?,...,rg do not cause later
(when the momentum equations are relaxed) significant "feed-
back”, i.e., too large changes back in rg . Near the boun-
dary feed-back changes are partly "absorbed" by the boundary
conditions, and therefore such "small feed-back" schemes are
easy to design. If for example we use the scheme shown in
Figs. 6.2(b) or 6.2(c), it is easy to calculate and show that
feed-back changes in rg are small enough. That is, the sum
of all feed-back changes in rg is zero (hence, smooth errors
contribute little to the feed-back), while the sum of their
absolute values is only a small fraction of the relaxed quan-
tity. Moreover, the signs of the feed-back residual changes
is opposite to the direct changes in rg caused by the step
shown in Figs. 6.2(b) or 6.2(c).

The smoothing factor is most easily calculated by the

amplification matrix of the residuals _r%,r?,...,rg . For the
Fourier component exp(i 8-x/h) = exp(ild; xj/h) , let

) . h h
(AO’AI""’Ad) be the amplitudes of (ro,rg,...,rd) before

the relaxation sweep, and let (RO,KI,...,Kd) be the corres-

ponding amplitudes after the sweep. The sweep is made of d+1

passes. In the j-th pass (j =1,...,d) , relaxing the j-th
momemtum equation, Aj is multiplied by XA({6) , while other
momemtum amplitudes Ay (1 « k £d, k #3J) remain
unchanged.
8 a - ie]
A(@) = —=—— , where g(8) = | e . (6.15)
2d - 8 j=1

is the Gauss-Seidel amplification factor for the (2d+1)-point
Poisscn eguation (cf. e.g., Sec. 3.1 in [B3]). The j-th pass
_does change AO , adding to it some multiple of Aj . In the
last pass, relaxing the continuity "equation, ApseeeiBy
remain unchanged, and Ay is multiplied by A(8) (cf.
‘Sec. 5.3 above). Hence

A, [x(8) Ay e Aga Ly

A

(6.16)

Jdole e O n

kdl
[oF
[
P
o
X
[oF
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The largest eigenvalue of this (triangular) amplification

matrix is A(9) , hence the smoothing factor is :
_ .500 if d=2
B = max |[A(8)] { (6.17)

<|8| .567 if d=3

™ 4

N

(N}

the same smoothing factor as in Gauss-Seidel relaxation for

the standard Poisscn equation.

6.4 Multi-grid procedures

For multi-grid processing of Stokes eguations we use a

sequence of grids (levels) with sizes hl,...,h where

hpe1 = 3
level k are every other grid line (plane) of level k+l

M 1
hy , and where the grid lines (or grid planes) of

Hence, each cell of level k is the union of Zd cells of

level k+1 . 1In two dimensions (d=2) the configuration is

shown in Fig. 6.3. Instead of §h , Qh ' pl ’ £h ' uh and

3? used in Sections 6.2 and 6.3, the discrete functions and

k k
operators on the k-th level are now denoted by gk U, Py

Ck R uk and ég , respectively.

_>————

[ l \&J =/
| P
| " @ {

Pice 1 Q) P

FIGURE 6.3 A coarse-grid cell divided into fine-grid cells.

Same notation as in Fig. 6.1 is used, with heavy type for the
coarse grid and light type for the fine grid.



We have solved Stokes equations using beth Cycle C and
the Full Multi-Grid (FMG) algorithms (see Secs. 2.2 and 2.6).
For coarse-grid corrections we used alternatively the Correc-
tion Scheme (CS) and the Full-Approximation Scheme (FAS), with
identical results.. We describe here the procedures in terms
of FAS, since CS is not extendable to the nonlinear Navier-

Stokes equations.

Coarse-to-fine interpolations. In the FMG algorithm, the

first coarse-to-fine interpolation (2.11) has to be of order
at least four for the velocities and at least three for the
pressure. The design of such interpolations is straight-
forward, although it turns out somewhat cumbersome near

boundaries.

' . . +1
The coarse-to-fine interpolation of corrections ( Ii

in (2.15)) has to be of orders at least two for the velocities
and one for the pressure. We used bilinear (i.e., order two)
interpolations for both.

The fine-to-coarse transfers are made by averaging. For

the FAS transfer of u§+l we can use the same averaging as
for the r§+l P (j =1,...,d) , which can be either the
minimal-operations transfer
T\
Ik rk+1 - k+l k+1 k+1 rk+l (6.18)
k+1 T35 ul cee uj cee pd 3 P .
» (] = 11 "ld)

or the full weighting

k k+l _  k+1 k+l k+1 _k+1

Ik+l rj = uj My see Mg rj , (6.19)

(3=1,...,4) ,
where the hat in (6.18) indicates the term to be skipped in
the sequence. The résidual—weighting (6.18) is less expensive
than (6.19), especially since it requires calculating only ore
half of the fine-grid residuals. But (6.19) is more reliable
in the nonlinear case and near boundaries, since it is "full"”
i.e., it transfers all the fine-grid residuals, attaching the
same total weight to each of them.

The FAS transfer of pk+l can be made with the same

weighting as the transfer of the continuity-equation residuals

Ik rk+l ~ . k+1 k+1 rk+l

k+1 Fo =¥ cee Mg 0 , (6.20)
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which is both simplest and full. 1In fact, if the minimal=-
k+1

operations transfer (6.18) is used for the velocities uj '
then (6.20) need not really be calculated: If the FAS con-

tinuity equation on level k 1is written in the form

d
7ok ok = g (6.21a)
i=1

Jj 73 0

{where fé = Fé on the currently finest level .£ ), it is

easy to see that (6.20) is equivalent to

k _  k+l k+1 _k+1
fo = ul [P Ld f0 , (k < 2) , (6.21b)
which does not depend on gk+l .

The compatibility condition (6.9) is automatically
obtained (upto round-off errors) on all levels provided it
holds on the finest one. This results directly from (6.20).

Switching criteria. Since the rate of smoothing of all

the relaxation passes is the same, we could base our algorithm

(see Sec. 2.2)) on residual norm of the form
e, =3 a. |l2X (6.22)
" j LTy . .
where r? are defined in (6.10), (6.13), and the norm is the

L2 norm, say. There was no sensitivity to the choice of

aj > 0 , and one could for example use ay = 1,

@) = ... =0y = U . another alternative is to use a fixed

algorithm, such as Fig. 2.2.

T-extrapolations have first failed to vield impressive

improvements. Only later we realized the reason: 1In a
staggered grid, in order to employ t-extrapolation, the
coarse-to-fine interpolation (2.12) must be of a higher

order.

6.5 Numerical Results

For programming simplicity we confined our experiments to
two-dimensional (d = 2) rectargles. (Experiments with many
equations [S1] conclusively show that the shape of the domain
does not significantly affect the performance of the
algorithm.) We first experimented with cycling algorithms
(Sec. 2.6). Since the smoothing factor i = .50 1is the same

-82-



as u§ for the five-point Poisson equation, we were surprised .
when the.exéeriments showed that the asymptotic multi-grid
convergence factor per relaxation-work-unit for the Stokes
equation was around ; = .65, as against ﬁ = .55 for the
Poisson equation. For some time we thought that our treat-
ment of the boundary conditions might be responsible for the
slower convergence. The one-level analysis (Sec. 4.4) cannot
show any difference between Stokes and Poisson equations; it
gives b= 137% = .595 for both. Therefore the two-level
analysis had to ke used. That analysis indeed gave a very
good agreement with the numerical results (see Table 6.1 and
more details in (D2])), which finally satisfied us that the
program, including the procedures at the boundary, were all

right.

TABLE 6.1

Comparison between theoretical and experimental convergence
factors for Stokes equations (reproduced from [Dl}).

Number of 8 ;
sweeps on (See Step F
finest grid in Sec. 2.2 & Mode
per cycle Sec. 4.7.2) analysis experimental
1 .4 .661 .638
1 .5 .648 .634
2 . v .680 .695
2 .4 .710 .725
3 .1 .714 .722

The next step was to convert our program from CS to FAS,
and then from cycling to Full Multi-Grid (FMG — as in Sec.
2.2). Later, the Stokes Program was generalized to Navier-
Stokes. The FMG results for Stokes equations is a special
case of the results described in Sec. 7.5 (and much further
in [D2]) for the Navier-Stokes equations.
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7. STEADY-STATE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

7.1 The differential problem

The steady-state incompressible Navier-Stokes egquations

in d dimensions are

¥-U =F, : (7.1a)
QU+ VP = F (7.1b)
where Q = -A+R] U3, , R being the Reynolds number. The
Stokes system (6.1) is the special case R=0 . 1In the dis-

cussion below, especially in the mode analysis (but not in

the actual solution process) we treat Q as being independent
of U, i.e., as if some Ug appears in Q instead of u; -
This is equivalent to linearizing the system around some go,
and omitiing the lowest order term of the linearized equations
(the term R g (aiug)uj in the j-th momentum equation. For

all Reynolds numbers this term is locally dominated by the’
second term of QU. , on any scale h such that

]hBinl < |U} ). wWe can then write the equations in the
matrix form

P 0 31 e ad P FO
Ul 31 Q O Ul Fl
L{ - = : (:)'_ N = . ’ (7.2)
Uy 33 0 Uy \\Pd
so that det L = -4 Qd-1 . Hence (7.1) is again an elliptic

system of order 2d , and therefore requires d boundary
conditions. Usually the values of U on the boundary are
given. From the general theory of elliptic systems [ADN] it
follows that the linearized system (7.2) with such boundary
conditions has one and only one solution, which has all the

- stability and smoothness properties one could expect. The
theoretical results for the nonlinear system are more involved
and the reader is referred to [Tl}.
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7.2 Finite-difference approximations

The discretization is carried out on the same staggered
grid as before (Fig. 6.1), using the difference equations

d
) R at cell centers (7.3a)
j=1 + 1 0 :
Qh U?-+3? Ph = F? at j-face centers (j=l,...,d). (7.3b)
where Qh is some difference approximation to Q. Since
det LP = -aP(@M %71 | it is clear that L® is T-elliptic if

and only if Qh is T-elliptic, and Lh has good hT-
ellipticity measure if and only if Qh does. Hence, all we
have to construct is a good approximation to Q . For small
to moderate hR|U| (i.e., hR|U| not much larger than 1 )
this can be done by central differencing (Sec. 3.10.1). But
for larger thgi upstream differencing (Sec. 3.10.2) or
explicit artificial viscosity terms (Sec. 3.10.3) should be
used. Either way, the resulting operator contains 0 (hP)
artificial viscosity. A better multi-level.poséibility is to
employ such Qh only in the relaxation sweeps, while in the
residual transfers use the central approximation (see Sec.
3.11).

7.3 DGS relaxation

Generalizing the scheme in Sec. 6.3 to any elliptic
operator Qh , relaxation proceeds as follows:

The j-th momentum equation (7.3b) is relaxed by changing
values of u? only, in a hanner suitable for the operator
Qh . For example, if each component Ui has a constant sign
throughout the domain, a point-wise Gauss-Seidel relaxation
marching downstream is the most efficient manner: It gives

a smoothing factor # s .5, and y = O(th_L_]])“l

for large
hrR|u| . If all possible signs of U, and all possible
relative magnitudes of hR{U;| (i=1,...,d) appear in the
domain, symmetric line relaxation (for d =2) or symmetric
plane relaxation (for d=3) is the best. Any line (or
plane) direction may be chosen. Symmetric relaxation means
that the sweep is made of two passes: In the first pass the
lines are taken in some, say increasing, order, and in the

second pass the order is reversed. In two dimensions, for
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example, a double-pass relaxation sweep has a smoothing factor
at most .2 for any (frozen} S-point Qh constructed by up-
stream differencing, hence its smoothing factor per one pass

is § g .27 = .447

Having relaxed in this way all the momentum equations
(i=1,...,4) , we then make a pass of relaxation for the
continuity equation (7.3a), by scanning the cells one by one
in some consistent order. At each cell the relaxation step
is a generalizaticn of Fig. 6.2 and eqs. (6.14) above:

Denoting again the center of the cell by x and its charac-

teristic function by XQ , the relaxation step is
h h h h
u. . - . 7.4a)
5Ty Gha]x§ (
p" « p"+ong™ (7.4b)
where & is still given by (6.12) and (6.10).  That is, ¢

is chosen so that the new velocities (7.4a) satisfy the dis-

crete continuity equation at x .

It is easy to see that changes 7.4 are such that the
residuals of the momentum equations

o= PP L ghph (5 =1,...,d) (7.5)

] J J ]

are preserved, at least in the approximate sense of regarding
Qh as locally constant. Except for the omission of the
lowest order term (see Sec. 7.1 and 7.4), thié freezing of

Qh is in line with the usual assumption of the mode analysis
(see Sec. 4). Hence it follows, as in Sec. 6.3, that the
amplification matrix of a compound relaxation sweep has the
form

v« «

or v 0d

e
R(8) : . , (7.5)
0 O <@

where ‘A(Q) is given by (6.15), N is the number of passes

on the continuity equation included in the sweep, «(8) is

the amplification factor (per pass) of the Qh relaxation,

and K is the number of passes on each momentum eguation.
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Usually one takes N=K , and the smoothing factor then is

p = max max(\(8),x(8)) , (7.6)
IR :
so that we still have 1§ = .5 for two dimensional problems

with symmetric line relaxation (in the momentum equations).
In case the flow in the entire field is in the same general
direction, one can use downstream relaxation (for the
momentum equations) with N > K, since the momentum-
equations smoo*hing is faster than the continuity-egquation

one (cf. Sec. 2.3).

7.4 Multi-grid procedures

The grids, their relative positions and the interpolation
procedures between them are the same as for Stokes equations
(Sec. 6.4). Because of the nonlinearity, FAS should cf course
be used, and the full weighting (6.19) is preferable to (6.18)
in the fine-to-coarse transfers of both the solution and the
residual function.

For large values of R , the effect of physical instabi-
lity (see Sec. 7.6) is felt as deterioration in the smoothing
and convergence rates of relaxation on the coarse grids. (This
can be regarded as the effect of the lowest-order term, which
was neglected in the smoothing analysis). Hence it is
necessary at large Reynolds numbers to work with accommodative
algorithms (Sec. 2.2). Such algorithms épend more sweeps and
cycles at coarse levels. The overall efficiency, however, is
not too much affected, since those extra sweeps and cycles
cost very little.

7.5 Numerical results

Our codes are still in a stage of development: We
" programmed only two-dimensional problems in rectangular
domains. More importantly, the symmetric line relaxation for:
.the momentum equations is not yet implemented. Only'pointwise
Gauss-Seidel was so far used. Hence the performance is not
optimal for problems with reverse flows and large Reynolds
numbers. On the other hand we could fully check the efficiency
of our procedure, even fo. large R , for problems where our
relaxation marching direction is everywhere downstream. For
such problems the numerical results really fulfill all the.
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theoretical expectations.
We first experimented with cycling algorithms. For
small and moderate Reynolds numbers the behavior was essen-

-tially as for Stokes equations, namely the convergence factor

per relaxation-work-unit was about .50 to .57 for the first
few cycles, and increased asymptotically to around .65. For
large Reynolds numbers (50 < R < 4000) the convergence was
even faster (sometimes much faster) in the first cycle, but
it slowed down later. The asymptotic rate is not much
worse than .65 as long as R does not approach physical in-
stabilities. (In the example shown in [Dl] the asymptotic
convergence factor for R=4096 seems to be around .78 on a
64 x 64 grid. But the procedure there is not optimallsince
it contains too much work per cycle.) A collection of
results of cycling Navier-Stokes algorithms can be found in
[p2].

Full Multi-Grid (FMG) algorithms were then constructed
and we studied the main question of multi-grid performance:
How much work is required to solve the difference equations

"to within the truncation-errors", i.e., to the point where

the numerical-solution errors |l -ujl -, }lvh-vll .
“Ph"Pli are comparable to the discretization errors
Nleb-olt . UvP-v]l . |Ip®-p|| , where (P,U,V) denotes

here the trace of the true differential solution on the
finest grid, whose meshsize is h , and where the norm is
the maximum norm. Since the true solution is seldom known,
we took for our tests either one of the following approaches:
(i) Specifying (P,V,U) in advance, we computed from them
both the forcing terms (PO,Fl,FZ) , to serve in our
equations, and the boundary conditions. Such problems turn
out to be somewhat artificial. (ii) Instead of comparing
with (P,U,V) , we compared with (Ph/z,Uh/z,Vh/z), the
solution on a still finer grid, obtained there by many multi-
grid cycles.

Our tests confirmed the theoretical prediction that,
since the smoothing rate is .5, the FMGAalgorithm with only
one multi-grid correction cycle (similar to Fig. 2.2, but
possibly with more cycling on coarse levels) always produces

a solution within the truncation errors. The work of such
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algorithm was always less than 10 relaxation-work-units. With
a more precise choice of the algorithm parameters, we could
get the work down to 5~7 work units. The results are fully
reported in {D2]. Here we only reproduce a small example —
Table 7.1.

The solution errors for two problems are shown. The
results are grouped in pairs: the lower entry ip each pair
is the error for our l-cycle algorithm, while the upper entry
is the result of many-cycles algorithm, effectively giving
the discretization error. The domain of the two problems is

the unit square. The boundary conditions for problem I are

0 ‘ top and bottom boundaries
U= 7y(l-y)2 left boundary
7y2(l—Y) right boundary

and V =0 on all boundaries, and for problem II
{ 60y” (1-y) % (2y-1) right boundary

0 other boundaries

and V=0 on all boundaries. Our l-cyéle algorithm contains

at the end two relaxation sweeps on the finest grid. At most
one of them is really neceded in order to obtain the level of
errors shown in the table. Hence the shown amount of work
units could be reduced by at least 1. Note that Problem I
contains a backward flow, and that only forward relaxation was
used. With symmetric relaxation the results for R=100 should
be improved. Note also that we used weighted averages of cen-
tral and upstream differencing. Hence for Rh *» 1 our

accuracy is O(h) .
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TABLE 7.1

h 0 h h
b T L R T N T o
ro- rl or
h h h :
blom| R| n | [uP-u®il | vP= w0y LT -0y | units
.00580 .00680 .0660 23.3
I 8 8x8 00577 .00728 0623 9.6
.00147 .00170 .0159 26.4
16x16 .00157 .00181 0171 7.7
3232 .000376 .000417 .00385 26.8
.000417 000438 .00475 7.2
.00380 .00383 .374 | 28.9
1001 1616 .00376 .00372 2331 9.2
.00153 .00237 114 27.3
32%32 .00154 .00240 115 7.9
.00379 .00288 1.730 43.4
500 3232 .00407 00367 1.828 9.7
000476 .000661 .00956 | 27.2
T | 0)32x32 ©000498 .000748 .01240 7.3
.00178 .00281 .0643 26.8
8 | 16x16 .00196 .00289 .0830 7.7
32x32 .000502 .000679 .0156 28.4
.000589 .000776 L0221 7.3
.0292 .0315 2.478 47.7
100 16x16 .0384 .0402 3.457 10.4
33%32 .0149 L0170 1.236 45.1
.0207 .0234 1.831 9.8
(Po, UO, VO) is the solution on the 64 x 64 grid.

7.6 Physical instabilities

The main difference between physical and numerical in-
stapilities is that the latter first appear at high-
frequencies (where the numerical -olution does not approxi-
mate the differential one) while the former {first appear at
low-frequency modes, whose Reynolds number (i.e., R times
their wavelength) is large. The slow divergence of such
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smooth modes in a relaxation process (which may be regarded

as a time-like process) does not trouble the error—smo;thing
process. Also, the instability does not appear when the
multi-grid process (see Fig. 2.2) first works at coarse levels,
since the numerical scheme contains enough artificial vis-
cosity {see Sec. 3.10). It is only when the process comes
back to coarse levels after visiting sufficiently fine levels
(where artificial viscosity is sufficiently small) that the
physical instability starts to show up.

It is clear that no purely iterative (time-like) solu-
tion process can solve the steady-state flow equations when
the solution is unstable. In the multi-grid process, however,
this limitation is, in principle, removed, since, at each
cycle, the coarsest-grid equations can be solved directly, not
by relaxation. It is in this way possible to calculate un-
stable solutions, provided the coarsest grid used is fine

enough to resolve the unstable modes.
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